43 resultados para Hierarchical stochastic learning
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We derive an easy-to-compute approximate bound for the range of step-sizes for which the constant-modulus algorithm (CMA) will remain stable if initialized close to a minimum of the CM cost function. Our model highlights the influence, of the signal constellation used in the transmission system: for smaller variation in the modulus of the transmitted symbols, the algorithm will be more robust, and the steady-state misadjustment will be smaller. The theoretical results are validated through several simulations, for long and short filters and channels.
Resumo:
Several popular Machine Learning techniques are originally designed for the solution of two-class problems. However, several classification problems have more than two classes. One approach to deal with multiclass problems using binary classifiers is to decompose the multiclass problem into multiple binary sub-problems disposed in a binary tree. This approach requires a binary partition of the classes for each node of the tree, which defines the tree structure. This paper presents two algorithms to determine the tree structure taking into account information collected from the used dataset. This approach allows the tree structure to be determined automatically for any multiclass dataset.
Resumo:
We have the purpose of analyzing the effect of explicit diffusion processes in a predator-prey stochastic lattice model. More precisely we wish to investigate the possible effects due to diffusion upon the thresholds of coexistence of species, i. e., the possible changes in the transition between the active state and the absorbing state devoid of predators. To accomplish this task we have performed time dependent simulations and dynamic mean-field approximations. Our results indicate that the diffusive process can enhance the species coexistence.
Resumo:
Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.
Resumo:
Two case studies are presented to describe the process of public school teachers authoring and creating chemistry simulations. They are part of the Virtual Didactic Laboratory for Chemistry, a project developed by the School of the Future of the University of Sao Paulo. the documental analysis of the material produced by two groups of teachers reflects different selection process for both themes and problem-situations when creating simulations. The study demonstrates the potential for chemistry learning with an approach that takes students' everyday lives into account and is based on collaborative work among teachers and researches. Also, from the teachers' perspectives, the possibilities of interaction that a simulation offers for classroom activities are considered.
Resumo:
Introduction. The ToLigado Project - Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method. This virtual learning environment aims to motivate trans-disciplinary research among public school students and teachers in 2,931 schools equipped with Internet-access computer rooms. Within this virtual community, students produce collective multimedia research documents that are immediately published in the portal. The project also aims to increase students' autonomy for research, collaborative work and Web authorship. Main sections of the portal are presented and described. Results. Partial results of the first two years' implementation are presented and indicate a strong motivation among students to produce knowledge despite the fragile hardware and software infrastructure at the time. Discussion. In this new environment, students should be seen as 'knowledge architects' and teachers as facilitators, or 'curiosity managers'. The ToLigado portal may constitute a repository for future studies regarding student attitudes in virtual learning environments, students' behaviour as 'authors', Web authorship involving collective knowledge production, teachers' behaviour as facilitators, and virtual learning environments as digital repositories of students' knowledge construction and social capital in virtual learning communities.
Resumo:
In a local production system (LPS), besides external economies, the interaction, cooperation, and learning are indicated by the literature as complementary ways of enhancing the LPS's competitiveness and gains. In Brazil, the greater part of LPSs, mostly composed by small enterprises, displays incipient relationships and low levels of interaction and cooperation among their actors. The size of the participating enterprises itself for specificities that engender organizational constraints, which, in turn, can have a considerable impact on their relationships and learning dynamics. For that reason, it is the purpose of this article to present an analysis of interaction, cooperation, and learning relationships among several types of actors pertaining to an LPS in the farming equipment and machinery sector, bearing in mind the specificities of small enterprises. To this end, the fieldwork carried out in this study aimed at: (i) investigating external and internal knowledge sources conducive to learning and (ii) identifying and analyzing motivating and inhibiting factors related to specificities of small enterprises in order to bring the LPS members closer together and increase their cooperation and interaction. Empirical evidence shows that internal aspects of the enterprises, related to management and infrastructure, can have a strong bearing on their joint actions, interaction and learning processes.
Resumo:
Consider N sites randomly and uniformly distributed in a d-dimensional hypercube. A walker explores this disordered medium going to the nearest site, which has not been visited in the last mu (memory) steps. The walker trajectory is composed of a transient part and a periodic part (cycle). For one-dimensional systems, travelers can or cannot explore all available space, giving rise to a crossover between localized and extended regimes at the critical memory mu(1) = log(2) N. The deterministic rule can be softened to consider more realistic situations with the inclusion of a stochastic parameter T (temperature). In this case, the walker movement is driven by a probability density function parameterized by T and a cost function. The cost function increases as the distance between two sites and favors hops to closer sites. As the temperature increases, the walker can escape from cycles that are reminiscent of the deterministic nature and extend the exploration. Here, we report an analytical model and numerical studies of the influence of the temperature and the critical memory in the exploration of one-dimensional disordered systems.
Resumo:
Souza MA, Souza MH, Palheta RC Jr, Cruz PR, Medeiros BA, Rola FH, Magalhaes PJ, Troncon LE, Santos AA. Evaluation of gastrointestinal motility in awake rats: a learning exercise for undergraduate biomedical students. Adv Physiol Educ 33: 343-348, 2009; doi: 10.1152/advan.90176.2008.-Current medical curricula devote scarce time for practical activities on digestive physiology, despite frequent misconceptions about dyspepsia and dysmotility phenomena. Thus, we designed a hands-on activity followed by a small-group discussion on gut motility. Male awake rats were randomly submitted to insulin, control, or hypertonic protocols. Insulin and control rats were gavage fed with 5% glucose solution, whereas hypertonic-fed rats were gavage fed with 50% glucose solution. Insulin treatment was performed 30 min before a meal. All meals (1.5 ml) contained an equal mass of phenol red dye. After 10, 15, or 20 min of meal gavage, rats were euthanized. Each subset consisted of six to eight rats. Dye recovery in the stomach and proximal, middle, and distal small intestine was measured by spectrophotometry, a safe and reliable method that can be performed by minimally trained students. In a separate group of rats, we used the same protocols except that the test meal contained (99m)Tc as a marker. Compared with control, the hypertonic meal delayed gastric emptying and gastrointestinal transit, whereas insulinic hypoglycemia accelerated them. The session helped engage our undergraduate students in observing and analyzing gut motor behavior. In conclusion, the fractional dye retention test can be used as a teaching tool to strengthen the understanding of basic physiopathological features of gastrointestinal motility.
Resumo:
The purpose of this investigation was to evaluate three learning methods for teaching basic oral surgical skills Thirty predoctoral dental students without any surgical knowledge or previous surgical experience were divided Into three groups (n=10 each) according to instructional strategy Group 1, active learning Group 2, text reading only, and Group 3, text reading and video demonstration After instruction, the apprentices were allowed to practice incision dissection and suture maneuvers in a bench learning model During the students' performance, a structured practice evaluation test to account for correct or incorrect maneuvers was applied by trained observers Evaluation tests were repeated after thirty and sixty days Data from resulting scores between groups and periods were considered for statistical analysis (ANOVA and Tukey Kramer) with a significant level of a=0 05 Results showed that the active learning group presented the significantly best learning outcomes related to immediate assimilation of surgical procedures compared to other groups All groups results were similar after sixty days of the first practice Assessment tests were fundamental to evaluate teaching strategies and allowed theoretical and proficiency learning feedbacks Repetition and interactive practice promoted retention of knowledge on basic oral surgical skills
Resumo:
The purpose of this study was to assess the benefits of using e-learning resources in a dental training course on Atraumatic Restorative Treatment (ART). This e-course was given in a DVD format, which presented the ART technique and philosophy. The participants were twenty-four dentists from the Brazilian public health system. Prior to receiving the DVD, the dentists answered a questionnaire regarding their personal data, previous knowledge about ART, and general interest in training courses. The dentists also participated in an assessment process consisting of a test applied before and after the course. A single researcher corrected the tests, and intraexaminer reproducibility was calculated (kappa=0.89). Paired t-tests were carried out to compare the means between the assessments, showing a significant improvement in the performance of the subjects on the test taken after the course (p<0.05). A linear regression model was used with the difference between the means as the outcome. A greater improvement on the test results was observed among female dentists (p=0.034), dentists working for a shorter period of time in the public health system (p=0.042), and dentists who used the ART technique only for urgent and/or temporary treatment (p=0.010). In conclusion, e-learning has the potential of improving the knowledge that dentists working in the public health system have about ART, especially those with less clinical experience and less knowledge about the subject.
Resumo:
We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.
Resumo:
We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.
Resumo:
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.
Resumo:
We consider binary infinite order stochastic chains perturbed by a random noise. This means that at each time step, the value assumed by the chain can be randomly and independently flipped with a small fixed probability. We show that the transition probabilities of the perturbed chain are uniformly close to the corresponding transition probabilities of the original chain. As a consequence, in the case of stochastic chains with unbounded but otherwise finite variable length memory, we show that it is possible to recover the context tree of the original chain, using a suitable version of the algorithm Context, provided that the noise is small enough.