141 resultados para HYDROXIDE NANOPARTICLES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The present paper describes the physical-chemical characterization and electrochemical behavior of a new nanomaterial formed by the addition of cadmium and cobalt atoms into the structure of nickel hydroxide nanoparticles, these ones synthesized by an easy sonochemical method. Particles of about 5 nm diameter were obtained and characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy. Different nickel hydroxide nanoparticles were immobilized onto transparent conducting substrates by using electrostatic layer-by-layer providing thin films at the nanoscale and the electrochemical behavior was investigated. The formation of a mixed hydroxide was corroborated by observation of very interesting properties as redox potential shifting to less positive potentials and high stability when submitted to long electrochemical cycling or high times of ultrasonic synthesis, suggesting practical applications. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nickel hydroxide can provide an outstanding cathode material in alkaline secondary batteries, however the progressive decrease of the charge capacity as a function of the number of oxidation/reduction cycles is a challenging problem to be solved. New improvements on the electrochemical properties of electrode materials can be achieved by exploiting the much better performance of alpha-nickel hydroxide. Such materials were obtained in a stable form by sol-gel method and characterized by thermogravimetric analyses, UV-Vis spectroscopy, X-ray diffractometry, scanning and transmission electron microscopy, cyclic voltammetry and electrochemical quartz crystal microbalance techniques. The results revealed not only the formation of the alpha-Ni(OH)(2) phase, but also a much better electrochemical reversibility and stability as compared with similar materials obtained by electrochemical precipitation method.
Resumo:
The present paper describes the immobilization of nanoparticles onto conducting substrates by using both electrostatic layer-by-layer and electrophoretic deposition (EPD) methods. These two techniques were compared in high-performance electrochromic electrodes based on mixed nickel hydroxide nanoparticles. In addition to easy handling, EPD seems to be the most suitable method for the immobilization of nanoparticles, leading to higher electrochromic efficiencies, lower response times and higher stability upon coloration and bleaching cycling. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ruthenium hydroxide supported on silica-coated magnetic nanoparticles was shown to be an efficient heterogeneous catalyst for the liquid-phase oxidation of a wide range of alcohols using molecular oxygen as a sole oxidant in the absence of co-catalysts or additives. The material was prepared through the loading of the amino modified support with ruthenium(III) ions from an aqueous solution of ruthenium(III) chloride followed by treatment with sodium hydroxide to form ruthenium hydroxide species. Characterizations suggest that ruthenium hydroxide is highly dispersed on the support surface, with no ruthenium containing crystalline phases being detected. Various carbonylic monoterpenoids important for fragrance and pharmaceutical industries can be obtained in good to excellent yields starting from biomass-based monoterpenic alcohols, such as isobomeol, perillyl alcohol, carveol, and citronellol. The catalyst undergoes no metal leaching and can be easily recovered by the application of an external magnet and re-used. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present paper describes the catalytic oxidation of urea performed by nickel hydroxide and nickel/cobalt hydroxide modified electrodes by using both electrodeposited films and nanoparticles. The incorporation of Co foreign atoms leads to a slight increase in sensitivity besides the shift in redox process, avoiding the oxygen reaction. Nanostructured Ni80Co20(OH)(2) was synthesized by sonochemical route producing 5 nm diameter particles characterized by high-resolution transmission electron microscopy (HRTEM) being immobilized onto electrode by using the electrostatic Layer-by-layer technique, yielding attractive modified electrodes for sensor development. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: The objective of this paper is to report the clinical case of a patient who presented a chronic apical periodontitis, arising from internal inflammatory resorption followed by pulp necrosis, and a long-term success of a root canal therapy using calcium hydroxide as root canal dressing. CASE DESCRIPTION: A 20-year-old male patient presented for routine dental treatment. By radiographic examination we noted an extensive radioluscent area, laterally to the permanent maxillary right lateral incisor, with possibility of communication with the lateral periodontium, suggestive of a chronic apical periodontitis. Due to external root resorption detection, we used a calcium hydroxide root canal dressing, changed every 15 days, for a period of 2 months. Root canal filling was performed using gutta-percha cones by lateral condensation technique Radiographic follow up held after 19 years of treatment indicated a periodontium in conditions of normality, with the presence of lamina dura. CONCLUSION: Calcium hydroxide is a suitable material to be used as root canal dressing in teeth with apical periodontitis. Long-term evaluation demonstrated the satisfactory clinical outcome following root canal treatment.
Resumo:
This study was evaluated the response of subcutaneous connective tissue of isogenic mice to calcium hydroxide-based pastes with chlorhexidine digluconate (CHX). Seventy isogenic male BALB/c mice aged 6-8 weeks and weighing 15-20 g were randomly assigned to 8 groups. The animals received polyethylene tube implants as follows: Groups I, II, and III (n=10) - Calen® paste mixed with 0.4% CHX (experimental paste; Calen/CHX) for 7, 21, and 63 days, respectively; Groups IV, V, and VI (n=10) - UltraCal™ paste mixed with 2% CHX (experimental paste supplied by Ultradent Products Inc.; Ultracal/CHX) for 7, 21, and 63 days, respectively; and Groups VII and VIII (n=5): empty tube for 7 and 21 days, respectively. At the end of the experimental periods, the implants were removed together with the surrounding tissues (skin and subcutaneous connective tissue). The biopsied tissues were subjected to routine processing for histological analysis. Using a descriptive analysis and a four-point (0-3) scoring system, the following criteria were considered for qualitative and quantitative analysis of the tissue around the implanted materials: collagen fiber formation, tissue thickness and inflammatory infiltrate. A quantitative analysis was performed by measuring the thickness (µm), area (µm²) and perimeter (µm) of the reactionary granulomatous tissue formed at the tube ends. Data were analyzed statistically by the Kruskal-Wallis test and Dunn's post-test (α=0.05). Calen/CHX showed biocompatibility with the subcutaneous and reactionary tissues, with areas of discrete fibrosis and normal conjunctive fibrous tissue, though without statistically significant difference (p>0.05) from the control groups. In Groups I to III, there was a predominance of score 1, while in Groups IV to VI scores 2 and 3 predominated for all analyzed parameters. UltraCal/CHX, on the other hand, induced the formation of an inflammatory infiltrate and abundant exudate, suggesting a persistent residual aggression from the material, even 63 days after implant placement. In conclusion, the Calen paste mixed with 0.4% CHX allowed an adequate tissue response, whereas the UltraCal paste mixed with 2% CHX showed unsatisfactory results.
Resumo:
The aim of this study was to quantify radiographically the periapical bone resorption in dogs' teeth contaminated with bacterial endotoxin (LPS), associated or not with calcium hydroxide. After pulp tissue removal, 60 premolars were randomly assigned to 4 groups and were either filled with LPS (group 1), filled with LPS plus calcium hydroxide (group 2) or filled with saline (group 3) for a period of 30 days. In group 4, periapical lesion formation was induced with no canal treatment. Standardized radiographs were taken at the beginning of the treatment and after 30 days and the Image J Program was used for measurement of periapical lesion size. Periapical lesions were observed in groups 1 (average of 8.44 mm2) and 4 (average of 3.02 mm2). The lamina dura was intact and there were no areas of periapical bone resorption in groups 2 and 3. It may be concluded that calcium hydroxide was effective in inactivating LPS, as demonstrated by the absence of apical periodontitis in the roots that were filled with bacterial endotoxin plus calcium hydroxide.
Resumo:
PURPOSE: This study evaluated the inflammatory reaction caused by the implantation of iodoform and calcium hydroxide in the back of rats. These drugs may be used as intracanal dressings to eliminate residual bacteria of the root canal system. METHODS: Twenty albinic rats (Rattus norvegicus, var Wistar) were divided into four groups: control group 1 (CG1) had normal skin; control group 2 (CG2) had wounded tissue without drugs; in groups 3 and 4, iodoform (IG) and calcium hydroxide (CHG) were inserted into the wounds, respectively. After 3, 5 and 11 days, slices of the implanted areas were macroscopically and microscopically observed regarding to their qualitative and quantitative aspects. RESULTS: In the macroscopical analysis, the CHG showed a large area of necrosis and swelling, which progressively decreased; in the IG the presence of iodoform surrounded by normal tissue was observed. The qualitative and quantitative histological analysis showed that IG promoted a shorter delay in the inflammatory response than the CHG. CONCLUSION: The inflammatory reaction for iodoform had a peak period five days after the drug insertion. By comparison, calcium hydroxide showed a very large area of necrosis that could only be partially eliminated after eleven days.
Resumo:
This study aimed to evaluate the diffusion capacity of calcium hydroxide pastes with different vehicles through dentinal tubules. The study was conducted on 60 extracted single-rooted human teeth whose crowns had been removed. The root canals were instrumented and divided into 4 groups according to the vehicle of the calcium hydroxide paste: Group I - distilled water; Group II - propylene glycol; Group III - 0.2% chlorhexidine; Group IV - 2% chlorhexidine. After placement of the root canal dressings, the teeth were sealed and placed in flasks containing deionized water. After 1, 2, 7, 15, 30, 45 and 60 days, the pH of the water was measured to determine the diffusion of calcium hydroxide through the dentinal tubules. The data were recorded and statistically compared by the Tukey test. The results showed that all pastes presented a similar diffusion capacity through dentin. Group IV did not present difference compared to group I. Group II presented difference compared to the other groups, as did Group III. In conclusion, groups I and IV presented a better diffusion capacity through dentin than groups II and III; 2% chlorhexidine can be used as a vehicle in calcium hydroxide pastes.
Resumo:
The aqueous alkaline reaction of 1,3-bis(4-cyanopyridinium)propane dibromide, a reactant constituted of two pyridinium rings linked by a three-methylene bridge, generates a novel compound,1 -(4-cyano-2-oxo-1,2-dihydro-1-pyridyl)-3-(4-cyano-1,2-dihydro-1-pyridyl)propane. The reaction pathway is attributed to the proximity of the OH- ion inserted between two pyridinium moieties, which occurs only in bis(pyridinium) derivatives connected by short methylene spacers, where charge-conformational effects are important.
Resumo:
Hydrogels micro, sub-micro and nanoparticles are of great interest for drug encapsulation and delivery or as embolotherapic agents. In this work it is described the preparation of nano and sub-microparticles of pre-formed, high molecular weight and monomer free poly(N-vinyl-2-pyrrolidone) encapsulated inside the core of lecithin vesicles. The hydrogel particles are formed with a very narrow diameter distribution, of about 800 nm, and a moderate swelling ratio, of approximately 10.
Resumo:
Lipase from Burkholderia cepacia immobilized on superparamagnetic nanoparticles using adsorption and chemisorption methodologies was efficiently applied as recyclable biocatalyst in the enzymatic kinetic resolution of (RS)-1-(phenyl)ethanols via transesterification reactions. (R)-Esters and the remaining (S)-alcohols were obtained with excellent enantiomeric excess (> 99%), which corresponds to a perfect process of enzymatic kinetic resolution (conversion 50%, E > 200). The transesterification reactions catalysed with B. cepacia lipase immobilized by the glutaraldehyde method showed the best results in terms of reusability, preserving the enzyme activity (conversion 50%, E > 200) for at least 8 successive cycles.