4 resultados para Governmental investigations.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The mechanisms of nucleation and growth and the solid-to-liquid transition of metallic nanoclusters embedded in sodium borate glass were recently studied in situ via small-angle X-ray scattering (SAXS) and wide-an-le X-ray scattering (WAXS). SAXS results indicate that, under isothermal annealing conditions, the formation and growth of Bi or Ag nanoclusters embedded in sodium borate glass occurs through two successive stages after a short incubation period. The first stage is characterized by the nucleation and growth of spherical metal clusters promoted by the diffusion of Bi or Ag atoms through the initially supersaturated glass phase. The second stage is named the coarsening stage and occurs when the (Bi- or Ag-) doping level of the vitreous matrix is close to the equilibrium value. The experimental results demonstrated that, at advanced stages of the growth process, the time dependence of the average radius and density number of the clusters is in agreement with the classical Lifshitz-Slyozov-Waoner (LSW) theory. However, the radius distribution function is better described by a lognormal function than by the function derived from the theoretical LSW model. From the results of SAXS measurements at different temperatures, the activation energies for the diffusion of Ag and Bi through sodium borate glass were determined. In addition, via combination of the results of simultaneous WAXS and SAXS measurements at different temperatures, the crystallographic structure and the dependence of melting temperature T(m) on crystal radius R of Bi nanocrystals were established. The experimental results indicate that T(m) is a linear and decreasing function of nanocrystal reciprocal radius 1/R, in agreement with the Couchman and Jesser theoretical model. Finally, a weak contraction in the lattice parameters of Bi nanocrystals with respect to bulk crystals was established.
Resumo:
Energy transfer processes were studied in two sets of Yb3+ and Tm3+ co-doped sodium-metaphosphate glasses, prepared in air and nitrogen atmospheres. Using Forster, Dexter, and Miyakawa theoretical models, the energy transfer parameters were calculated. The main ion-ion energy transfer processes analyzed were energy migration among Yb3+ ions, cross-relaxations between Yb3+ and Tm3+ ions, and interactions with OH- radicals. The results indicated that Yb -> Tm energy transfer favors 1.8 mu m emissions, and there is no evidence of concentration quenching up to 2% Tm2O3 doping. As expected, samples prepared in nitrogen atmosphere present higher fluorescence quantum efficiency than those prepared in air, and this feature is specially noted in the near-infrared region, where the interaction with the OH- radicals is more pronounced. (c) 2007 Published by Elsevier B.V.
Resumo:
We present a minor but essential modification to the CODEX 1D-MAS exchange experiment. The new CONTRA method, which requires minor changes of the original sequence only, has advantages over the previously introduced S-CODEX, since it is less sensitive to artefacts caused by finite pulse lengths. The performance of this variant, including the finite pulse effect, was confirmed by SIMPSON calculations and demonstrated on a number of dynamic systems. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Polymers doped with rare earth complexes are advantaged in film production for many applications in the luminescent field. In this luminescent polycarbonate (PC) films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(TTA)(3)(H(2)O)(2)] were prepared and their calorimetric and luminescent properties in the solid state are reported. The thermal behavior was investigated by utilization of differential scanning calorimetry (DSC) and thermogravimetry (TG). Due of the addition of rare earth [Eu(TTA)(3)(H(2)O)(2)] into PC matrix, changes were observed in the thermal behavior concerning the glass transition and thermal stability. Characteristic broadened narrow bands arising from the (5)D(0) -> (7)F(J) transitions (J = 4-0) of Eu(3+) ion indicate the incorporation of the Eu(3+) ions in the polymer. The luminescent films show enhancement emission intensity with an increase of rare earth concentration in polymeric matrix accompanied by decrease in thermal stability.