2 resultados para Government Data
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Accessibility has become a serious issue to be considered by various sectors of the society. However, what are the differences between the perception of accessibility by academy, government and industry? In this paper, we present an analysis of this issue based on a large survey carried out with 613 participants involved with Web development, from all of the 27 Brazilian states. The paper presents results from the data analysis for each sector, along with statistical tests regarding the main different issues related to each of the sectors, such as: government and law, industry and techniques, academy and education. The concern about accessibility law is poor even amongst people from government sector. The analyses have also pointed out that the academy has not been addressing accessibility training accordingly. The knowledge about proper techniques to produce accessible contents is better than other sectors`, but still limited in industry. Stronger investments in training and in the promotion of consciousness about the law may be pointed as the most important tools to help a more effective policy on Web accessibility in Brazil.
Resumo:
P>In the context of either Bayesian or classical sensitivity analyses of over-parametrized models for incomplete categorical data, it is well known that prior-dependence on posterior inferences of nonidentifiable parameters or that too parsimonious over-parametrized models may lead to erroneous conclusions. Nevertheless, some authors either pay no attention to which parameters are nonidentifiable or do not appropriately account for possible prior-dependence. We review the literature on this topic and consider simple examples to emphasize that in both inferential frameworks, the subjective components can influence results in nontrivial ways, irrespectively of the sample size. Specifically, we show that prior distributions commonly regarded as slightly informative or noninformative may actually be too informative for nonidentifiable parameters, and that the choice of over-parametrized models may drastically impact the results, suggesting that a careful examination of their effects should be considered before drawing conclusions.Resume Que ce soit dans un cadre Bayesien ou classique, il est bien connu que la surparametrisation, dans les modeles pour donnees categorielles incompletes, peut conduire a des conclusions erronees. Cependant, certains auteurs persistent a negliger les problemes lies a la presence de parametres non identifies. Nous passons en revue la litterature dans ce domaine, et considerons quelques exemples surparametres simples dans lesquels les elements subjectifs influencent de facon non negligeable les resultats, independamment de la taille des echantillons. Plus precisement, nous montrons comment des a priori consideres comme peu ou non-informatifs peuvent se reveler extremement informatifs en ce qui concerne les parametres non identifies, et que le recours a des modeles surparametres peut avoir sur les conclusions finales un impact considerable. Ceci suggere un examen tres attentif de l`impact potentiel des a priori.