2 resultados para Galileu, 1564-1642
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Let (R, m) be a d-dimensional Noetherian local ring. In this work we prove that the mixed Buchsbaum-Rim multiplicity for a finite family of R-submodules of R(p) of finite colength coincides with the Buchsbaum-Rim multiplicity of the module generated by a suitable superficial sequence, that is, we generalize for modules the well-known Risler-Teissier theorem. As a consequence, we give a new proof of a generalization for modules of the fundamental Rees` mixed Multiplicity theorem, which was first proved by Kirby and Rees in (1994, [8]). We use the above result to give an upper bound for the minimal number of generators of a finite colength R-submodule of R(p) in terms of mixed multiplicities for modules, which generalize a similar bound obtained by Cruz and Verma in (2000, [5]) for m-primary ideals. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
By using the NeXSPheRIO code, we study the elliptic-flow fluctuations in Au + Au collisions at 200 A GeV. It is shown that, by fixing the parameters of the model to correctly reproduce the charged pseudorapidity and the transverse-momentum distributions, reasonable agreement of < v(2)> with data is obtained, both as function of pseudorapidity as well as of transverse momentum, for charged particles. Our results on elliptic-flow fluctuations are in good agreement with the recently measured data on experiments.