Mixed multiplicities and the minimal number of generator of modules
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
Let (R, m) be a d-dimensional Noetherian local ring. In this work we prove that the mixed Buchsbaum-Rim multiplicity for a finite family of R-submodules of R(p) of finite colength coincides with the Buchsbaum-Rim multiplicity of the module generated by a suitable superficial sequence, that is, we generalize for modules the well-known Risler-Teissier theorem. As a consequence, we give a new proof of a generalization for modules of the fundamental Rees` mixed Multiplicity theorem, which was first proved by Kirby and Rees in (1994, [8]). We use the above result to give an upper bound for the minimal number of generators of a finite colength R-submodule of R(p) in terms of mixed multiplicities for modules, which generalize a similar bound obtained by Cruz and Verma in (2000, [5]) for m-primary ideals. (C) 2009 Elsevier B.V. All rights reserved. FAPESP-Brazil[08/53703-0] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Procad/Capes[190/2007] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq-Brazil[308915/2006-2] |
Identificador |
JOURNAL OF PURE AND APPLIED ALGEBRA, v.214, n.9, p.1642-1653, 2010 0022-4049 http://producao.usp.br/handle/BDPI/28816 10.1016/j.jpaa.2009.12.009 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Journal of Pure and Applied Algebra |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #BUCHSBAUM-RIM MULTIPLICITY #RINGS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |