220 resultados para GUIDED BONE REGENERATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this work, we propose natural rubber latex (NRL) membranes as a protein delivery system. For this purpose Bovine Serum Albumin (BSA) was incorporated into the latex solution for in vitro protein delivery experiments. Different polymerization temperatures were used, from -10 to 27 °C, in order to control the membrane morphology. These membranes were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), as well as the Lowry Method to measure the BSA release. SEM and AFM microscopy analysis showed that the number, size and distribution of pores in NRL membranes can be varied, as well as its overall morphology. We have found that the morphology of the membrane is the predominant factor for higher protein release, compared with pore size and number of pores. Results demonstrated that the best drug-delivery system was the membrane polymerized at RT (27 °C), which does release 66% of its BSA content for up to 18 days. Our results indicate that NRLb could be used in the future as an active membrane that could accelerate bone healing in GBR.
Resumo:
Purpose: Bone maintenance after mandibular reconstruction with autogenous iliac crest may be disappointing due to extensive resorption in the long term. The potential of the guided-bone regeneration (GBR) technique to enhance the healing process in segmental defects lacks comprehensive scientific documentation. This study aimed to investigate the influence of polylactide membrane permeability on the fate of iliac bone graft (BG) used to treat mandibular segmental defects. Materials and Methods: Unilateral 10-mm-wide segmental defects were created through the mandibles of 34 mongrel dogs. All defects were mechanically stabilized, and the animals were divided into 6 treatment groups: control, BG alone, microporous membrane (poly L/DL-lactide 80/20%) (Mi); Mi plus BG; microporous laser-perforated (15 cm(2) ratio) membrane (Mip), and Mip plus BG. Calcein fluorochrome was injected intravenously at 3 months, and animal euthanasia was carried out at 6 months postoperatively. Results: Histomorphometry showed that BG protected by Mip was consistently related to larger amounts of bone compared with other groups (P <= .0001). No difference was found between defects treated with Mip alone and BG alone. Mi alone rendered the least bone area and reduced the amount of grafted bone to control levels. Data from bone labeling indicated that the bone formation process was incipient in the BG group at 3 months postoperatively regardless of whether or not it was covered by membrane. In contrast, GBR with Mip tended to enhance bone formation activity at 3 months. Conclusions: The use of Mip alone could be a useful alternative to BG. The combination of Mip membrane and BG efficiently delivered increased bone amounts in segmental defects compared with other treatment modalities. (C) 2008 American Association of Oral and Maxillofacial Surgeons.
Resumo:
Objectives The purpose of this study was to evaluate the effectiveness of the acellular dermal matrix (ADM) as a membrane for guided bone regeneration (GBR), in comparison with a bioabsorbable membrane. Material and methods In seven dogs, the mandibular pre-molars were extracted. After 8 weeks, one bone defect was surgically created bilaterally and the GBR was performed. Each side was randomly assigned to the control group (CG: bioabsorbable membrane made of glycolide and lactide copolymer) or the test group (TG: ADM as a membrane). Immediately following GBR, standardized digital X-ray radiographs were taken, and were repeated at 8 and 16 weeks post-operatively. Before the GBR and euthanasia, clinical measurements of the width and thickness of the keratinized tissue (WKT and TKT, respectively) were performed. One animal was excluded from the study due to complications in the TG during wound healing; therefore, six dogs remained in the sample. The dogs were sacrificed 16 weeks following GBR, and a histomorphometric analysis was performed. Area measurements of new tissue and new bone, and linear measurements of bone height were performed. Results Post-operative healing of the CG was uneventful. In the TG membrane was exposed in two animals, and one of them was excluded from the sample. There were no statistically significant differences between the groups for any histomorphometric measurement. Clinically, both groups showed an increase in the TKT and a reduction in the WKT. Radiographically, an image suggestive of new bone formation could be observed in both groups at 8 and 16 weeks following GBR. Conclusion ADM acted as a barrier in GBR, with clinical, radiographic and histomorphometric results similar to those obtained with the bioabsorbable membrane. To cite this article:Borges GJ, Novaes AB Jr, de Moraes Grisi MF, Palioto DB, Taba M Jr, de Souza SLS. Acellular dermal matrix as a barrier in guided bone regeneration: a clinical, radiographic and histomorphometric study in dogs.Clin. Oral Impl. Res. 20, 2009; 1105-1115.
Resumo:
Chitosan, which is a non-toxic, biodegradable and biocompatible biopolymer, has been widely researched for several applications in the field of biomaterials. Calcium phosphate ceramics stand out among the so-called bioceramics for their absence of local or systemic toxicity, their non-response to foreign bodies or inflammations, and their apparent ability to bond to the host tissue. Hydroxyapatite (HA) is one of the most important bioceramics because it is the main component of the mineral phase of bone. The aim of this work was to produce chitosan membranes coated with hydroxyapatite using the modified biomimetic method. Membranes were synthesized from a solution containing 2% of chitosan in acetic acid (weight/volume) via the solvent evaporation method. Specimens were immersed in a sodium silicate solution and then in a 1.5 SBF (simulated body fluid) solution. The crystallinity of the HA formed over the membranes was correlated to the use of the nucleation agent (the sodium silicate solution itself). Coated membranes were characterized by means of scanning electron microscopy - SEM, X-ray diffraction - XRD, and Fourier transform infrared spectroscopy - FTIR. The results indicate a homogeneous coating covering the entire surface of the membrane and the production of a semi-crystalline hydroxyapatite layer similar to the mineral phase of human bone. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Few studies has been done using guided bone regeneration in maxillary sinus defects. Aim: To assess the bone repair process in surgical defects on the alveolar wall of the monkey maxillary sinus, which communicates with the sinus cavity, by using collagen membranes: Gen-derm - Genius Baumer, Pro-tape - Proline and autologous temporal fascia. Materials and Methods: In this prospective and experimental study, orosinusal communications were performed in four tufted capuchin monkeys (Cebus apella) and histologic analysis was carried out 180 days after. Results: In the defects without a cover (control), bone proliferation predominated in two animals and fibrous connective tissue predominated in the other two. In defects repaired with a temporal fascia flap, fibrous connective tissue predominated in three animals and bone proliferation predominated in one. In the defects repaired with Gen-derm or Pro-tape collagen membranes there was complete bone proliferation in three animals and fibrous connective tissue in one. Conclusions: Surgical defect can be repaired with both bone tissue and fibrous connective tissue in all study groups; collagen membranes was more beneficial in the bone repair process than temporal fascia or absence of a barrier.
Resumo:
Objectives. The aim of this study was to ultrastructurally examine the influence of simvastatin on bone healing in surgically created defects in rat mandibles. Study design. Bone defects 0.8 mm in diameter were created in the buccal aspect of first mandibular molar roots and filled with 2.5% simvastatin gel, while the controls were allowed to heal spontaneously. The rats were humanely killed 7, 9, 11, or 14 days postoperatively, and the specimens were processed for scanning and transmission electron microscopy, as well as for colloidal gold immunolabeling of osteopontin. Results. The regenerated alveolar bone in the simvastatin-treated defects presented smaller marrow spaces, and the collagen fibrils were regularly packed exhibiting a lamellar bone aspect. Osteopontin was present through the bone matrix during the wound healing and alveolar bone regeneration. Conclusion. The present study provides evidence that a single topical application of 2.5% simvastatin gel improves the quality of the new bone and decreases bone resorption. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112: 170-179)
Resumo:
Purpose: To investigate the healing of critical-size cranial bone defects (9-mm-diameter) in guinea pigs treated with a bovine bone-derived resorbable membrane. Materials and Methods: A sample of 42 guinea pigs was divided into test (n = 20), control (n = 20), and standard (n = 2) groups. A full-thickness trephine defect was made in the fronto-parietal bone of each animal. In the test group, the internal and external openings of the defect were each closed with a separate membrane, and the space between them was filled with blood clot and a central spacer. In the control group, the defect was filled only with the blood clot and spacer. At 1, 3, 6, and 9 months later, the calvarias (5 per period) for both the test and control groups were collected, fixed, radiographed, and histologically processed. The Standard-group animals were sacrificed immediately after surgery and used to determine the initial size of defect radiographically. The areas of defects in the radiographs were measured with image-analysis software and were compared between groups and periods by multiple regression analysis with the Bonferroni correction. Results: At 1 and 3 months, newly formed woven bone was histologically observed in both test and control groups. Radiographically, this new bone occupied an average of 32% of the defect area at 1 month and 60% at 3 months in the test group. In the control group, 21% of the defect was filled at 1 month and 39% at 3 months. However, the differences between treatments were not statistically significant (P > .05). At 6 and 9 months, a significant increase in newly formed lamellar bone was seen histologically in both groups. Radiographically, for the test group, the new bone occupied an average of 82% of the defect area at 6 months and 96% at 9 months. For the control group, new bone composed an average of 45% of the defect area at 6 months and 40% at 9 months. The differences between the test and control groups were statistically significant at 6 and 9 months (P < .05). Complete or almost complete filling of the defect was observed in several cases. Conclusion: It was concluded that the bovine bone-derived membrane is highly biocompatible and is able to promote good healing of critical-size defects in calvaria of guinea pig.
Resumo:
MMPs are endopeptidases that play a pivotal role in ECM turnover. RECK is a single membrane-anchored MMP-regulator. Here, we evaluated the temporal and spatial expression of MMP-2, MMP-9, and RECK during alveolar bone regeneration. The maxillary central incisor of Wistar rats was extracted and the animals were killed at 1, 3, 7, 10, 14, 21, 28, and 42 days post-operatively (n = 3/period). The hemimaxillae were collected, demineralized and embedded in paraffin. Immunohistochemical analysis was performed by the immunoperoxidase technique with polyclonal antibodies. On day 1, polymorphonuclear cells in the blood clot presented mild immunolabeling for MMPs. During bone remodeling, osteoblasts facing new bone showed positive staining for gelatinases and RECK in all experimental periods. MMPs were also found in the connective tissue and endothelial cells. Our results show for the first time that inactive and/or active forms of MMP-2, MMP-9 and RECK are differentially expressed by osteogenic and connective cells during several events of alveolar bone regeneration. This may be important for the replacement of the blood clot by connective tissue, and in the formation, maturation and remodeling of new bone.
Resumo:
This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron-and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.
Resumo:
This article addresses diagnostic parameters that should be assessed in the treatment of extraction sockets with dental implant placement by presenting three case reports that emphasize the relevance of the amount of remaining bone walls. Diagnosis was based on the analysis of clinical and radiographic parameters (e.g.: bone defect morphology, remaining bone volume, presence of infections on the receptor site). Case 1 presents a 5-wall defect in the maxillary right central incisor region with severe root resorption, which was treated with immediate implant placement. Cases 2 and 3 present, respectively, two- and three-wall bone defects that did not have indication for immediate implants. These cases were first submitted to a guided bone regeneration (GBR) procedure with bone graft biomaterial and membrane barriers, and the implants were installed in a second surgical procedure. The analysis of the preoperative periodontal condition of the adjacent teeth and bone defect morphology is extremely important because these factors determine the choice between immediate implant or GBR treatment followed by implant installation in a subsequent intervention.
Resumo:
The esthetics and functional integrity of the periodontal tissue may be compromised by dental loss. Immediate implants became a viable option to maintain the periodontal architecture because of their anatomic compatibility with the dental socket and the possibility of eliminating local contamination. This article describes the procedure of immediate implant placement in the anterior maxilla replacing teeth with chronic periapical lesions, which were condemned due to endodontic lesions persisting after failed endodontic treatment and endodontic surgery, and discusses the relationship between the procedure and periapical lesions. Surgical removal of hopeless teeth 11, 12 and 21 was performed conservatively in such a way to preserve the anatomy and gingival esthetics. A second surgical access was gained at the apical level, allowing the debridement of the surgical chamber for elimination of the periapical lesion, visual orientation for setting of the implants and filling of the surgical chamber with xenogenous bovine bone graft. After this procedure, the bone chamber was covered with an absorbent membrane and the healing screws were positioned on the implants. Later, a provisional partial removable denture was installed and the implants were inserted after 6 months. After 3 years of rehabilitation, the implants present satisfactory functional and esthetic conditions, suggesting that immediate implant placement combined with guided bone regeneration may be indicated for replacing teeth lost due to chronic periapical lesions with endodontic failure history in the anterior maxilla.
Resumo:
Background. Periodontal disease is often associated with systemic diseases and is characterized by destruction of the tissues supporting the teeth. Patients using immunosuppressive drugs such as tacrolimus are among those who suffer from tissue destruction. Objective. We sought to evaluate the effects of laser and photodynamic therapies (PDT; nonsurgical) as an adjunct to scaling and rootplaning (SRP) in the treatment of corona-induced periodontitis in rats immunosuppressed with tacrolimus (Prograf). Materials and Methods. The animals were divided into 5 groups. Each groups had 6 rats. Group I, the control group, received only saline solution throughout the study period of 42 days and did not receive periodontal treatment; group II received saline solution and SRP; group III received tacrolimus (1 mg/kg per day) and was treated with SRP; group IV animals were treated identically to group III and then administered laser treatment; and in group V, the animals were treated identically to group III and then administered PDT. Results. Statistical analysis indicated decreased bone loss with the progression of time (P = .035). There was no difference between the bone loss associated with the types of treatment administered to groups I, II, and III (P > .9) or groups IV and V (P > .6). The analysis also indicated that immunosuppression was not a bone loss-determining factor. Conclusion. Laser and PDT therapies were effective as an adjunctive treatment to SRP in reducing bone loss caused by experimental periodontitis induced in animals being treated systemically with tacrolimus.
Resumo:
Objectives The aims of this research were to evaluate the efficacy of a bioactive glass-ceramic (Biosilicate (R)) and a bioactive glass (Biogran (R)) placed in dental sockets in the maintenance of alveolar ridge and in the osseointegration of Ti implants. Material and methods Six dogs had their low premolars extracted and the sockets were implanted with Biosilicate (R), Biogran (R) particles, or left untreated. After the extractions, measurements of width and height on the alveolar ridge were taken. After 12 weeks a new surgery was performed to take the final ridge measurements and to insert bilaterally three Ti implants in biomaterial-implanted and control sites. Eight weeks post-Ti implant placement block biopsies were processed for histological and histomorphometric analysis. The percentages of bone-implant contact (BIC), of mineralized bone area between threads (BABT), and of mineralized bone area within the mirror area (BAMA) were determined. Results The presence of Biosilicate (R) or Biogran (R) particles preserved alveolar ridge height without affecting its width. No significant differences in terms of BIC, BAMA, and BABT values were detected among Biosilicate (R), Biogran (R), and the non-implanted group. Conclusions The results of the present study indicate that filling of sockets with either Biosilicate (R) or Biogran (R) particles preserves alveolar bone ridge height and allows osseointegration of Ti implants. To cite this article:Roriz VM, Rosa AL, Peitl O, Zanotto ED, Panzeri H, de Oliveira PT. Efficacy of a bioactive glass-ceramic (Biosilicate (R)) in the maintenance of alveolar ridges and in osseointegration of titanium implants.Clin. Oral Impl. Res. 21, 2010; 148-155.doi: 10.1111/j.1600-0501.2009.01812.x.
Resumo:
Aim To evaluate the influence of resorbable membranes on hard tissue alterations and osseointegration at implants placed into extraction sockets in a dog model. Material and methods In the mandibular premolar region, implants were installed immediately into the extraction sockets of six Labrador dogs. Collagen-resorbable membranes were placed at the test sites, while the control sites were left uncovered. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation. Results After 4 months of healing, a control implant was not integrated (n=5). Both at the test and at the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between the test and the control sites, the alveolar bone crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 1.7 mm) compared with the control sites (loss: 2.2 mm). Conclusions The use of collagen-resorbable membranes at implants immediately placed into extraction sockets contributed to a partial (23%) preservation of the buccal outline of the alveolar process. To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Carvalho Cardoso L, Lang NP. Collagen membranes at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 891-897.doi: 10.1111/j.1600-0501.2010.01946.x.
Resumo:
Chitosan, a biopolymer obtained from chitin, and its derivates, such as chitosan hydrochloride, has been reported as wound healing accelerators and as possible bone substitutes for tissue engineering, and therefore these Substances could be relevant in dentistry and periodontology. The purpose of this investigation was to make a histological evaluation of chitosan and chitosan hydrochloride biomaterials (gels) used in the correction of critical size bone defects made in rat`s calvaria. Bone defects of 8 mm in diameter were surgically created in the calviria of 50 Holtzman (Rattus norvegicus) rats and filled with blood clot (control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride, and high molecular weight chitosan hydrochloride, numbering 10 animals, divided into two experimental periods (15 and 60 days), for each biomaterial. The histological evaluation was made based on the morphology of the new-formed tissues in defect`s region, and the results indicated that there was no statistical difference between the groups when the new bone formation in the entire defect`s area were compared (p > 0.05) and, except in the control groups, assorted degrees of inflammation Could be Seen. In Conclusion, chitosan and chitosan hydrochloride biomaterials used in this study were not able to promote new bone formation in critical size defects made in rat`s calvaria. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res 93A: 107-114, 2016