144 resultados para GENOMIC PROBES

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular methods that permit the simultaneous detection and quantification of a large number of microbial species are currently employed in the evaluation of complex ecosystems. The checkerboard DNA-DNA hybridization technique enables the simultaneous identification of distinct bacterial. species in a large number of dental samples. The original technique employed digoxigenin-labeled whole genomic DNA probes which were detected by chemiluminescence. In this study, we present an alternative protocol for labeling and detecting whole genomic DNA probes in the Checkerboard DNA-DNA hybridization method. Whole genomic DNA was extracted from five bacterial species and labeled with fluorescein. The fluorescein labeled whole genomic DNA probes were hybridized against whole genomic DNA or subgingival plaque samples in a checkerboard hybridization format, followed by chemiluminescent detection. Our results reveal that fluorescein is a viable and adequate alternative labeling reagent to be employed in the checkerboard DNA-DNA hybridization technique. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Expressed sequence tags derived markers have a great potential to be used in functional map construction and QTL tagging. In the present work, sugarcane genomic probes and expressed sequence tags having homology to genes, mostly involved in carbohydrate metabolism were used in RFLP assays to identify putative QTLs as well as their epistatic interactions for fiber content, cane yield, pol and tones of sugar per hectare, at two crop cycles in a progeny derived from a bi-parental cross of sugarcane elite materials. A hundred and twenty marker trait associations were found, of which 26 at both crop cycle and 32 only at first ratoon cane. A sucrose synthase derived marker was associated with a putative QTL having a high negative effect on cane yield and also with a QTL having a positive effect on Pol at both crop cycles. Fifty digenic epistatic marker interactions were identified for the four traits evaluated. Of these, only two were observed at both crop cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The DNA Checkerboard method enables the simultaneous identification of distinct microorganisms in a large number of samples and employs up to 45 whole genomic DNA probes to gram-negative and gram-positive bacterial species present in subgingival biofilms. Collectively, they account for 55%-60% of the bacteria in subgingival biofilms. In this study, we present the DNA Checkerboard hybridization as an alternative method for the detection and quantitation of Candida species in oral cavities. Our results reveal that DNA Checkerboard is sensitive enough and constitutes a powerful and appropriate method for detecting and quantifying Candida species found in the oral cavity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Comparative genomic hybridization (CGH) is a valuable alternative to fluorescence in situ hybridization (FISH) for preimplantation genetic screening (PGS) because it allows full karyotype analysis. However, this approach requires the cryopreservation of biopsied embryos until results are available. The aim of this study is to reduce the hybridization period of CGH, in order to make this short-CGH technique suitable for PGS of Day-3 embryos, avoiding the cryopreservation step. METHODS: Thirty-two fibroblasts from six aneuploid cell lines (Coriell) and 48 blastomeres from 10 Day-4 embryos, discarded after PGS by FISH with 9 probes (9-chr-FISH), were analysed by short-CGH. A reanalysis by the standard 72 h-CGH and FISH using telomeric probes was performed when no concordant results between short-CGH and FISH diagnosis were observed. The short-CGH was subsequently applied in a clinical case of advanced maternal age. RESULTS: In 100% of the fibroblasts analysed, the characteristic aneuploidies of each cell line were detected by short-CGH. The results of the 48 blastomeres screened by short-CGH were supported by both 72 h-CGH results and FISH reanalysis. The chromosomes most frequently involved in aneuploidy were 22 and 16, but aneuploidies for the other chromosomes, excepting 1, 10 and 13, were also detected. Forty-one of the 94 aneuploid events observed (43.6%) corresponded to chromosomes which are not analysed by 9-chr-FISH. CONCLUSIONS: We have performed a preliminary validation of the short-CGH technique, including one clinical case, suggesting this approach may be applied to Day-3 aneuploidy analysis, thereby avoiding embryo cryopreservation and perhaps helping to improve implantation rate after PGS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leite-Dellova DC, Malnic G, Mello-Aires M. Genomic and non-genomic stimulatory effect of aldosterone on H(+)-ATPase in proximal S3 segments. Am J Physiol Renal Physiol 300: F682-F691, 2011. First published December 29, 2010; doi:10.1152/ajprenal.00172.2010.-The genomic and nongenomic effects of aldosterone on the intracellular pH recovery rate (pHirr) via H(-)(+)ATPase and on cytosolic free calcium concentration ([Ca(2+)](i)) were investigated in isolated proximal S3 segments of rats during superfusion with an Na(+)-free solution, by using the fluorescent probes BCECF-AM and FLUO-4-AM, respectively. The pHirr, after cellular acidification with a NH(4)Cl pulse, was 0.064 +/- 0.003 pH units/min (n = 17/74) and was abolished with concanamycin. Aldosterone (10(-12), 10(-10),10(-8), or 10(-6) M with 1-h or 15- or 2-min preincubation) increased the pHirr. The baseline [Ca(2+)](i) was 103 +/- 2 nM (n = 58). After 1 min of aldosterone preincubation, there was a transient and dose-dependent increase in [Ca(2+)](i) and after 6-min preincubation there was a new increase in [Ca(2+)](i) that persisted after 1 h. Spironolactone [mineralocorticoid (MR) antagonist], actinomycin D, or cycloheximide did not affect the effects of aldosterone (15- or 2-min preincubation) on pHirr and on [Ca(2+)](i) but inhibited the effects of aldosterone (1-h preincubation) on these parameters. RU 486 [glucocorticoid (GR) antagonist] and dimethyl-BAPTA (Ca(2+) chelator) prevented the effect of aldosterone on both parameters. The data indicate a genomic (1 h, via MR) and a nongenomic action (15 or 2 min, probably via GR) on the H(+)-ATPase and on [Ca(2+)](i). The results are compatible with stimulation of the H(+)-ATPase by increases in [Ca(2+)](i) (at 10(-12)-10(-6) M aldosterone) and inhibition of the H(+)-ATPase by decreases in [Ca(2+)](i) (at 10(-12) or 10(-6) M aldosterone plus RU 486).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility ( het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer ( HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated ""gene dumps'' and, perhaps, simultaneously, as "" gene factories''.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on pre-DNA racial/color methodology, clinical and pharmacological trials have traditionally considered the different geographical regions of Brazil as being very heterogeneous. We wished to ascertain how such diversity of regional color categories correlated with ancestry. Using a panel of 40 validated ancestry-informative insertion-deletion DNA polymorphisms we estimated individually the European, African and Amerindian ancestry components of 934 self-categorized White, Brown or Black Brazilians from the four most populous regions of the Country. We unraveled great ancestral diversity between and within the different regions. Especially, color categories in the northern part of Brazil diverged significantly in their ancestry proportions from their counterparts in the southern part of the Country, indicating that diverse regional semantics were being used in the self-classification as White, Brown or Black. To circumvent these regional subjective differences in color perception, we estimated the general ancestry proportions of each of the four regions in a form independent of color considerations. For that, we multiplied the proportions of a given ancestry in a given color category by the official census information about the proportion of that color category in the specific region, to arrive at a ""total ancestry"" estimate. Once such a calculation was performed, there emerged a much higher level of uniformity than previously expected. In all regions studied, the European ancestry was predominant, with proportions ranging from 60.6% in the Northeast to 77.7% in the South. We propose that the immigration of six million Europeans to Brazil in the 19(th) and 20(th) centuries - a phenomenon described and intended as the ""whitening of Brazil"" -is in large part responsible for dissipating previous ancestry dissimilarities that reflected region-specific population histories. These findings, of both clinical and sociological importance for Brazil, should also be relevant to other countries with ancestrally admixed populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we investigated the relationship between polymorphisms in the estrogen-metabolizing genes CYP17, CYP1B1, CYP1A1, and COMT and genomic instability in the peripheral blood lymphocytes of 62 BC patients and 62 controls considering that increased or prolonged exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. Our data demonstrated increased genomic instability in BC patients and that individuals with higher frequencies of MN exhibited higher risk to BC when belonging Val/Met genotype of the COMT gene. We also observed that CYP17 and CYP1A1 polymorphisms can modify the risk to BC depending on the menopause status. We can conclude that the genetic background in estrogen metabolism pathway can modulate chromosome damage in healthy controls and patients and thereby influence the risk to BC. These findings suggest the importance to ally biomarkers of susceptibility and effects to estimate risk groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at s(NN)=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)(1/3) with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or similar to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Feature selection is a pattern recognition approach to choose important variables according to some criteria in order to distinguish or explain certain phenomena (i.e., for dimensionality reduction). There are many genomic and proteomic applications that rely on feature selection to answer questions such as selecting signature genes which are informative about some biological state, e. g., normal tissues and several types of cancer; or inferring a prediction network among elements such as genes, proteins and external stimuli. In these applications, a recurrent problem is the lack of samples to perform an adequate estimate of the joint probabilities between element states. A myriad of feature selection algorithms and criterion functions have been proposed, although it is difficult to point the best solution for each application. Results: The intent of this work is to provide an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools such as scatterplots, parallel coordinates and graphs. A feature selection approach for growing genetic networks from seed genes ( targets or predictors) is also implemented in the system. Conclusion: The proposed feature selection environment allows data analysis using several algorithms, criterion functions and graphic visualization tools. Our experiments have shown the software effectiveness in two distinct types of biological problems. Besides, the environment can be used in different pattern recognition applications, although the main concern regards bioinformatics tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Results: Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed that some of the mutated genes are differentially expressed when the bacterium is grown in citrus leaves. Finally, comparative genomic analysis revealed that 5 mutated ORFs are in new putative pathogenicity islands. Conclusion: The identification of these new genes related with Xcc infection and virulence is a great step towards the understanding of plant-pathogen interactions and could allow the development of strategies to control citrus canker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seeds of Theobroma cacao (cacao) are the source of cocoa, the raw material for the multi-billion dollar chocolate industry. Cacao`s two most important traits are its unique seed storage triglyceride (cocoa butter) and the flavor of its fermented beans (chocolate). The genome of T. cacao is being sequenced, and to expand the utility of the genome sequence to the improvement of cacao, we are evaluating Theobroma grandiflorum, the closest economically important species of Theobroma for its potential use in a comparative genomic study. T. grandiflorum differs from cacao in important agronomic traits such as flavor of the fermented beans, disease resistance to witches` broom and abscission of mature fruits. By comparing genomic sequences and analyzing viable inter-specific hybrids, we hope to identify the key genes that regulate cacao`s most important traits. We have investigated the utility in T. grandiflorum of three types of markers (microsatellite markers, single-strand conformational polymorphism markers and single nucleotide polymorphism (SNP) markers) developed in cacao. Through sequencing of amplicons of 12 diverse individuals of both cacao and T. grandiflorum, we have identified new intra- and inter-specific SNPs. Two markers which had no overlap of alleles between the species were used to genotype putative inter-specific hybrid seedlings. Sequence conservation was significant and species-specific differences numerous enough to suggest that comparative genomics of T. grandiflorum and T. cacao will be useful in elucidating the genetic differences that lead to a variety of important agronomic trait differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet`s effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet`s effects on genomic stability and DNA methylation. (C) 2011 Elsevier ay. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme ( GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high- density oligonucleotide arrays, and performed gene expression analyses using next- generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 ( IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.