260 resultados para GENERALIZED PHASE-SPACE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate the analog of Landau quantization, for a neutral polarized particle in the presence of homogeneous electric and magnetic external fields, in the context of non-commutative quantum mechanics. This particle, possessing electric and magnetic dipole moments, interacts with the fields via the Aharonov-Casher and He-McKellar-Wilkens effects. For this model we obtain the Landau energy spectrum and the radial eigenfunctions of the non-commutative space coordinates and non-commutative phase space coordinates. Also we show that the case of non-commutative phase space can be treated as a special case of the usual non-commutative space coordinates.
Resumo:
A system of nearest neighbors Kuramoto-like coupled oscillators placed in a ring is studied above the critical synchronization transition. We find a richness of solutions when the coupling increases, which exists only within a solvability region (SR). We also find that the solutions possess different characteristics, depending on the section of the boundary of the SR where they appear. We study the birth of these solutions and how they evolve when the coupling strength increases, and determine the diagram of solutions in phase space.
Resumo:
The synchronizing properties of two diffusively coupled hyperchaotic Lorenz 4D systems are investigated by calculating the transverse Lyapunov exponents and by observing the phase space trajectories near the synchronization hyperplane. The effect of parameter mismatch is also observed. A simple electrical circuit described by the Lorenz 4D equations is proposed. Some results from laboratory experiments with two coupled circuits are presented. Copyright (C) 2009 Ruy Barboza.
Resumo:
The existence of a classical limit describing the interacting particles in a second-quantized theory of identical particles with bosonic symmetry is proved. This limit exists in addition to the previously established classical limit with a classical field behavior, showing that the limit h -> 0 of the theory is not unique. An analogous result is valid for a free massive scalar field: two distinct classical limits are proved to exist, describing a system of particles or a classical field. The introduction of local operators in order to represent kinematical properties of interest is shown to break the permutation symmetry under some localizability conditions, allowing the study of individual particle properties.
Resumo:
Using the published KTeV samples of K(L) -> pi(+/-)e(-/+)nu and K(L) -> pi(+/-)mu(-/+)nu decays, we perform a reanalysis of the scalar and vector form factors based on the dispersive parametrization. We obtain phase-space integrals I(K)(e) = 0.15446 +/- 0.00025 and I(K)(mu) = 0.10219 +/- 0.00025. For the scalar form factor parametrization, the only free parameter is the normalized form factor value at the Callan-Treiman point (C); our best-fit results in InC = 0.1915 +/- 0.0122. We also study the sensitivity of C to different parametrizations of the vector form factor. The results for the phase-space integrals and C are then used to make tests of the standard model. Finally, we compare our results with lattice QCD calculations of F(K)/F(pi) and f(+)(0).
Resumo:
We present a new determination of the parity of the neutral pion via the double Dalitz decay pi(0) -> e(+)e(-)e(+)e(-). Our sample, which consists of 30511 candidate decays, was collected from K(L) -> pi(0)pi(0)pi(0) decays in flight at the KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the negative pi(0) parity and place a limit on scalar contributions to the pi(0) -> e(+)e(-)e(+)e(-) decay amplitude of less than 3.3% assuming CPT conservation. The pi(0)gamma(*)gamma(*) form factor is well described by a momentum-dependent model with a slope parameter fit to the final state phase-space distribution. Additionally, we have measured the branching ratio of this mode to be B(pi(0) -> e(+)e(-)e(+)e(-)) = (3.26 +/- 0.18) x 10(-5).
Resumo:
We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.
Resumo:
We show a function that fits well the probability density of return times between two consecutive visits of a chaotic trajectory to finite size regions in phase space. It deviates from the exponential statistics by a small power-law term, a term that represents the deterministic manifestation of the dynamics. We also show how one can quickly and easily estimate the Kolmogorov-Sinai entropy and the short-term correlation function by realizing observations of high probable returns. Our analyses are performed numerically in the Henon map and experimentally in a Chua's circuit. Finally, we discuss how our approach can be used to treat the data coming from experimental complex systems and for technological applications. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263943]
Resumo:
An effective treatment of the intramolecular degrees of freedom is presented for water, where these modes are decoupled from the intermolecular ones, ""adiabatically"" allowing these coordinates to be positioned at their local minimum of the potential energy surface. We perform ab initio Monte Carlo simulations with the configurational energies obtained via density functional theory. We study a water dimer as a prototype system, and even in this simple case the intramolecular relaxations are very important to properly describe properties such as the dipole moment. We show that rigid simulations do not correctly sample the phase space, resulting in an average dipole moment smaller than the one obtained with the adiabatic model, which is closer to the experimental result. (c) 2008 American Institute of Physics.
Resumo:
Some properties of the annular billiard under the presence of weak dissipation are studied. We show, in a dissipative system, that the average energy of a particle acquires higher values than its average energy of the conservative case. The creation of attractors, associated with a chaotic dynamics in the conservative regime, both in appropriated regions of the phase space, constitute a generic mechanism to increase the average energy of dynamical systems.
Resumo:
We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (sigma-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (Delta pi-family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system. The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low-moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions. Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.
Resumo:
This paper presents the second part in our study of the global structure of the planar phase space of the planetary three-body problem, when both planets lie in the vicinity of a 2/1 mean-motion resonance. While Paper I was devoted to cases where the outer planet is the more massive body, the present work is devoted to the cases where the more massive body is the inner planet. As before, outside the well-known Apsidal Corotation Resonances (ACR), the phase space shows a complex picture marked by the presence of several distinct regimes of resonant and non-resonant motion, crossed by families of periodic orbits and separated by chaotic zones. When the chosen values of the integrals of motion lead to symmetric ACR, the global dynamics are generally similar to the structure presented in Paper I. However, for asymmetric ACR the resonant phase space is strikingly different and shows a galore of distinct dynamical states. This structure is shown with the help of dynamical maps constructed on two different representative planes, one centred on the unstable symmetric ACR and the other on the stable asymmetric equilibrium solution. Although the study described in the work may be applied to any mass ratio, we present a detailed analysis for mass values similar to the Jupiter-Saturn case. Results give a global view of the different dynamical states available to resonant planets with these characteristics. Some of these dynamical paths could have marked the evolution of the giant planets of our Solar system, assuming they suffered a temporary capture in the 2/1 resonance during the latest stages of the formation of our Solar system.
Resumo:
A semiclassical approximation for an evolving density operator, driven by a `closed` Hamiltonian operator and `open` Markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the Hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of Hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra `open` term is added to the double Hamiltonian by the non-Hermitian part of the Lindblad operators in the general case of dissipative Markovian evolution. The particular case of generic Hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase space, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighbourhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further `small-chord` approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions.
Resumo:
The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved