8 resultados para Fuzzy multiobjective linear programming
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We introduce a problem called maximum common characters in blocks (MCCB), which arises in applications of approximate string comparison, particularly in the unification of possibly erroneous textual data coming from different sources. We show that this problem is NP-complete, but can nevertheless be solved satisfactorily using integer linear programming for instances of practical interest. Two integer linear formulations are proposed and compared in terms of their linear relaxations. We also compare the results of the approximate matching with other known measures such as the Levenshtein (edit) distance. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The constrained compartmentalized knapsack problem can be seen as an extension of the constrained knapsack problem. However, the items are grouped into different classes so that the overall knapsack has to be divided into compartments, and each compartment is loaded with items from the same class. Moreover, building a compartment incurs a fixed cost and a fixed loss of the capacity in the original knapsack, and the compartments are lower and upper bounded. The objective is to maximize the total value of the items loaded in the overall knapsack minus the cost of the compartments. This problem has been formulated as an integer non-linear program, and in this paper, we reformulate the non-linear model as an integer linear master problem with a large number of variables. Some heuristics based on the solution of the restricted master problem are investigated. A new and more compact integer linear model is also presented, which can be solved by a branch-and-bound commercial solver that found most of the optimal solutions for the constrained compartmentalized knapsack problem. On the other hand, heuristics provide good solutions with low computational effort. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
In this article we propose a 0-1 optimization model to determine a crop rotation schedule for each plot in a cropping area. The rotations have the same duration in all the plots and the crops are selected to maximize plot occupation. The crops may have different production times and planting dates. The problem includes planting constraints for adjacent plots and also for sequences of crops in the rotations. Moreover, cultivating crops for green manuring and fallow periods are scheduled into each plot. As the model has, in general, a great number of constraints and variables, we propose a heuristics based on column generation. To evaluate the performance of the model and the method, computational experiments using real-world data were performed. The solutions obtained indicate that the method generates good results.
Resumo:
We consider an agricultural production problem, in which one must meet a known demand of crops while respecting ecologically-based production constraints. The problem is twofold: in order to meet the demand, one must determine the division of the available heterogeneous arable areas in plots and, for each plot, obtain an appropriate crop rotation schedule. Rotation plans must respect ecologically-based constraints such as the interdiction of certain crop successions, and the regular insertion of fallows and green manures. We propose a linear formulation for this problem, in which each variable is associated with a crop rotation schedule. The model may include a large number of variables and it is, therefore, solved by means of a column-generation approach. We also discuss some extensions to the model, in order to incorporate additional characteristics found in field conditions. A set of computational tests using instances based on real-world data confirms the efficacy of the proposed methodology. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of task scheduling is to minimize the makespan of applications, exploiting the best possible way to use shared resources. Applications have requirements which call for customized environments for their execution. One way to provide such environments is to use virtualization on demand. This paper presents two schedulers based on integer linear programming which schedule virtual machines (VMs) in grid resources and tasks on these VMs. The schedulers differ from previous work by the joint scheduling of tasks and VMs and by considering the impact of the available bandwidth on the quality of the schedule. Experiments show the efficacy of the schedulers in scenarios with different network configurations.
Resumo:
The focus of study in this paper is the class of packing problems. More specifically, it deals with the placement of a set of N circular items of unitary radius inside an object with the aim of minimizing its dimensions. Differently shaped containers are considered, namely circles, squares, rectangles, strips and triangles. By means of the resolution of non-linear equations systems through the Newton-Raphson method, the herein presented algorithm succeeds in improving the accuracy of previous results attained by continuous optimization approaches up to numerical machine precision. The computer implementation and the data sets are available at http://www.ime.usp.br/similar to egbirgin/packing/. (C) 2009 Elsevier Ltd, All rights reserved.
Resumo:
Given a fixed set of identical or different-sized circular items, the problem we deal with consists on finding the smallest object within which the items can be packed. Circular, triangular, squared, rectangular and also strip objects are considered. Moreover, 2D and 3D problems are treated. Twice-differentiable models for all these problems are presented. A strategy to reduce the complexity of evaluating the models is employed and, as a consequence, instances with a large number of items can be considered. Numerical experiments show the flexibility and reliability of the new unified approach. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.