9 resultados para Forcing terms
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This study investigates how the summer thunderstorms developed over the city of Sao Paulo and if the pollution might affect its development or characteristics during the austral summer (December-January-February-March, DJFM months). A total of 605 days from December 1999 to March 2004 was separated as 241 thunderstorms days (TDs) and 364 non-thunderstorm days (NTDs). The analyses are performed by using hourly measurements of air temperature (T), web-bulb temperature (Tw), surface atmospheric pressure (P), wind velocity and direction, rainfall and thunder and lightning observations collected at the Meteorological Station of the University of Sao Paulo in conjunction with aerosol measurements obtained by AERONET (Aerosol Robotic Network), and the NCEP-DOE (National Centers for Environmental Prediction Department of Energy) reanalysis and radiosondes. The wind diurnal cycle shows that for TDs the morning flow is from the northwest rotating to the southeast after 16: 00 local time (LT) and it remains from the east until the night. For the NTDs, the wind is well characterized by the sea-breeze circulation that in the morning has the wind blowing from the northeast and in the afternoon from the southeast. The TDs show that the air temperature diurnal cycle presents higher amplitude and the maximum temperature of the day is 3.2 degrees C higher than in NTDs. Another important factor found is the difference between moisture that is higher during TDs. In terms of precipitation, the TDs represent 40% of total of days analyzed and those days are responsible for more than 60% of the total rain accumulation during the summer, for instance 50% of the TDs had more than 15.5mm day(-1) while the NTDs had 4 mm day(-1). Moreover, the rainfall distribution shows that TDs have higher rainfall rate intensities and an afternoon precipitation maximum; while in the NTDs there isn`t a defined precipitation diurnal cycle. The wind and temperature fields from NCEP reanalysis concur with the local weather station and radiosonde observations. The NCEP composites show that TDs are controlled by synoptic circulation characterized by a pre-frontal situation, with a baroclinic zone situated at southern part of Sao Paulo. In terms of pollution, this study employed the AERONET data to obtain the main aerosol characteristics in the atmospheric column for both TDs and NTDs. The particle size distribution and particle volume size distribution have similar concentrations for both TDs and NTDs and present a similar fine and coarse mode mean radius. In respect to the atmospheric loading, the aerosol optical depth (AOD) at different frequencies presented closed mean values for both TDs and NTDs that were statistically significant at 95% level. The spectral dependency of those values in conjunction with the Angstrom parameter reveal the higher concentration of the fine mode particles that are more likely to be hygroscopic and from urban areas. In summary, no significant aerosol effect could be found on the development of summer thunderstorms, suggesting the strong synoptic control by the baroclinic forcing for deep convective development. (C) 2010 Published by Elsevier B. V.
Resumo:
This paper is concerned with the existence of a global attractor for the nonlinear beam equation, with nonlinear damping and source terms, u(tt) + Delta(2)u -M (integral(Omega)vertical bar del u vertical bar(2)dx) Delta u + f(u) + g(u(t)) = h in Omega x R(+), where Omega is a bounded domain of R(N), M is a nonnegative real function and h is an element of L(2)(Omega). The nonlinearities f(u) and g(u(t)) are essentially vertical bar u vertical bar(rho) u - vertical bar u vertical bar(sigma) u and vertical bar u(t)vertical bar(r) u(t) respectively, with rho, sigma, r > 0 and sigma < rho. This kind of problem models vibrations of extensible beams and plates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We propose an alternative formulation of the Standard Model which reduces the number of free parameters. In our framework, fermionic fields are assigned to fundamental representations of the Lorentz and the internal symmetry groups, whereas bosonic field variables transform as direct products of fundamental representations of all symmetry groups. This allows us to reduce the number of fundamental symmetries. We formulate the Standard Model by considering the SU(3) and SU(2) symmetry groups as the underlying symmetries of the fundamental interactions. This allows us to suggest a model, for the description of the interactions of the intermediate bosons among themselves and interactions of fermions, that makes use of just two parameters. One parameter characterizes the symmetric phase, whereas the other parameter (the asymmetry parameter) gives the breakdown strength of the symmetries. All coupling strengths of the Standard Model are then derived in terms of these two parameters. In particular, we show that all fermionic electric charges result from symmetry breakdown.
Resumo:
Protein-protein interaction networks were investigated in terms of outward accessibility, which quantifies the effectiveness of each protein in accessing other proteins and is related to the internality of nodes. By comparing the accessibility between 144 ortholog proteins in yeast and the fruit fly, we found that the accessibility tends to be higher among proteins in the fly than in yeast. In addition, z-scores of the accessibility calculated for different species revealed that the protein networks of less evolved species tend to be more random than those of more evolved species. The accessibility was also used to identify the border of the yeast protein interaction network, which was found to be mainly composed of viable proteins.
Resumo:
A new complex network model is proposed which is founded on growth, with new connections being established proportionally to the current dynamical activity of each node, which can be understood as a generalization of the Barabasi-Albert static model. By using several topological measurements, as well as optimal multivariate methods (canonical analysis and maximum likelihood decision), we show that this new model provides, among several other theoretical kinds of networks including Watts-Strogatz small-world networks, the greatest compatibility with three real-world cortical networks.
Resumo:
The relationship between network structure/dynamics and biological function constitutes a fundamental issue in systems biology. However, despite many related investigations, the correspondence between structure and biological functions is not yet fully understood. A related subject that has deserved particular attention recently concerns how essentiality is related to the structure and dynamics of protein interactions. In the current work, protein essentiality is investigated in terms of long range influences in protein-protein interaction networks by considering simulated dynamical aspects. This analysis is performed with respect to outward activations, an approach which models the propagation of interactions between proteins by considering self-avoiding random walks. The obtained results are compared to protein local connectivity. Both the connectivity and the outward activations were found to be strongly related to protein essentiality.
Resumo:
Phenomenological orbital-polarizition (OP) terms have been repeatedly introduced in the single-particle equations of spin-density-functional theory, in order to improve the description of orbital magnetic moments in systems containing transition metal ions. Here we show that these ad hoc corrections can be interpreted as approximations to the exchange-correlation vector potential A(xc) of current-density functional theory (CDFT). This connection provides additional information on both approaches: phenomenological OP terms are connected to first-principles theory, leading to a rationale for their empirical success and a reassessment of their limitations and the approximations made in their derivation. Conversely, the connection of OP terms with CDFT leads to a set of simple approximations to the CDFT potential A(xc), with a number of desirable features that are absent from electron-gas-based functionals. (C) 2008 Wiley Periodicals, Inc.
Resumo:
For an embedded singly periodic minimal surface (M) over tilde with genus rho >= 4 and annular ends, some weak symmetry hypotheses imply its congruence with one of the Hoffman-Wohlgemuth examples. We give a very geometrical proof of this fact, along which they come out many valuable clues for the understanding of these surfaces.
Resumo:
Nasal mucociliary system is the first line of defense of the upper airways and may be affected acutely by exposure to particulate matter (PM) from biomass burning. Several epidemiologic studies have demonstrated a consistent association between levels of air pollution from biomass burning with increases in hospitalization for respiratory diseases and mortality. To determine the acute effects of exposure to particulate matter from biomass burning in nasal mucociliary transport by saccharin transit time (STT) test, we studied thirty-three non-smokers and twelve light smokers sugarcane cutters in two periods: pre-harvest season and 4 h after harvest at the first day after biomass burning. Lung function, exhaled carbon monoxide (CO), nasal symptoms questionnaire and mucociliary clearance (MC) were assessed. Exhaled CO was increased in smokers compared to non-smokers but did not change significantly after harvest. In contrast, SIT was similar between smokers and non-smokers and decreased significantly after harvest in both groups (p < 0.001). Exposure to PM from biomass burning did not influence nasal symptoms. Our results suggest that acute exposure to particulate matter from sugarcane burned affects mucociliary clearance in smokers and non-smokers workers in the absence of symptoms. (C) 2011 Elsevier Ltd. All rights reserved.