A characterisation of the Hoffman-Wohlgemuth surfaces in terms of their symmetries


Autoria(s): BATISTA, V. Ramos; SIMOES, P.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

For an embedded singly periodic minimal surface (M) over tilde with genus rho >= 4 and annular ends, some weak symmetry hypotheses imply its congruence with one of the Hoffman-Wohlgemuth examples. We give a very geometrical proof of this fact, along which they come out many valuable clues for the understanding of these surfaces.

Identificador

GEOMETRIAE DEDICATA, v.142, n.1, p.191-214, 2009

0046-5755

http://producao.usp.br/handle/BDPI/30754

10.1007/s10711-009-9366-1

http://dx.doi.org/10.1007/s10711-009-9366-1

Idioma(s)

eng

Publicador

SPRINGER

Relação

Geometriae Dedicata

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #Minimal #Surfaces #EMBEDDED MINIMAL-SURFACES #FINITE TOTAL CURVATURE #GENUS ZERO #MEEKS SURFACES #ENDS #UNIQUENESS #CLASSIFICATION #R3 #Mathematics
Tipo

article

original article

publishedVersion