122 resultados para Fixed partial prosthesis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is no consensus in literature regarding the best plan for prosthetic rehabilitation with partial multiple adjacent implants to minimize stress generated in the bone-implant interface. The aim of this study was to evaluate the biomechanical behavior of cemented fixed partial dentures, splinted and nonsplinted, on Morse taper implants and with different types of coating material (ceramic and resin), using photoelastic stress analysis. A photoelastic model of an interposed edentulous space, missing a second premolar and a first molar, and rehabilitated with 4 different types of cemented crowns and supported by 2 adjacent implants was used. Groups were as follows: UC, splinted ceramic crowns; IC, nonsplinted ceramic crowns; UR, splinted resin crowns; and IR, nonsplinted resin crowns. Different vertical static loading conditions were performed: balanced occlusal load, 10 kgf; simultaneous punctiform load on the implanted premolar and molar, 10 kgf; and alternate punctiform load on the implanted premolar and molar, 5 kgf. Changes in stress distribution were analyzed in a polariscope, and digital photographs were taken of each condition to allow comparison of stress pattern distribution around the implants. Cementation of the fixed partial dentures generated stresses between implants. Splinted restorations distributed the stresses more evenly between the implants than nonsplinted when force was applied. Ceramic restorations presented better distribution of stresses than resin restorations. Based on the results obtained, it was concluded that splinted ceramic restorations promote better stress distribution around osseointegrated implants when compared with nonsplinted crowns; metal-ceramic restorations present less stress concentration and magnitude than metal-plastic restorations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 41-year-old man with cleft palate presented with a wide dehiscence and missing teeth. Six implants had been placed for fabrication of an overdenture, which was unsatisfactory. A bar was waxed and cast for connection to the implants; precision attachments were placed laterally for retention. A fixed partial denture was fabricated, and milled crowns were fabricated at the molar region to provide a guiding plane for insertion of a removable palatal obturator. Good swallowing and speech outcomes were achieved. This technique provided functional and esthetic benefits, enhanced oral hygiene, and improved the psychological condition of the patient.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article reports the case of a 55-year-old female patient who presented with unsatisfactory temporary crowns in the right mandibular premolars and molars, and a premolar-to-molar fixed partial denture in the left side. The clinical and radiographic examinations revealed a fracture of the left first premolar that was a retainer of the fixed partial denture and required extraction. Initially, the acrylic resin crowns were replaced by new ones, and a provisional RPD was made using acrylic resin and orthodontic wire clasps to resolve the problem arising from the loss of the fixed partial denture. Considering the patient's high esthetic demands, the treatment options for the definitive prosthetic treatment were discussed with her and rehabilitation with implant-supported dentures was proposed because the clinical conditions of the residual alveolar ridge were suitable for implant installation, and the patient's general health was excellent. However, the patient did not agree because she knew of a failed case of implant-retained denture in a diabetic individual and was concerned. The patient was fully informed that implant installation was the best indication for her case, but the arguments were not sufficient to change her decision. The treatment possibilities were presented and the patient opted for a clasp-retained removable partial denture (RPD) associated with the placement of crowns in the pillar teeth. The temporary RPD was replaced by the definitive RPD constructed subsequently. Although RPD was not the first choice, satisfactory esthetic and functional outcomes were achieved, overcaming the patient's expectations. This case report illustrates that the dentist must be prepared to deal with situations where, for reasons that cannot be managed, the patient does not accept the treatment considered as the most indicated for his/her case. Alternatives must be proposed and the functional and esthetic requirements must be fulfilled in the best possible manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Resin-bonded extracoronal attachments may be indicated for the abutment teeth of removable partial dentures, especially for anterior teeth when a cingulum rest must be provided. This type of treatment has a series of advantages such as minimal tooth reduction, supragingival margins, favourable stress distribution, and improved aesthetic appearance. Objective: To report a clinical case of oral rehabilitation using a combination of resin-bonded extracoronal attachments joined by a Dolder bar with a removable partial denture. Case report: A 60-year-old male patient with only the canines in the maxillary arch was restored with a combination of resin-bonded extracoronal attachments joined by a Dolder bar and a removable partial denture. Conclusion: Dentures with resin-bonded extracoronal attachments can have a number of advantages over traditional clasp-retained removable partial dentures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several impression materials are available in the Brazilian marketplace to be used in oral rehabilitation. The aim of this study was to compare the accuracy of different impression materials used for fixed partial dentures following the manufacturers' instructions. A master model representing a partially edentulous mandibular right hemi-arch segment whose teeth were prepared to receive full crowns was used. Custom trays were prepared with auto-polymerizing acrylic resin and impressions were performed with a dental surveyor, standardizing the path of insertion and removal of the tray. Alginate and elastomeric materials were used and stone casts were obtained after the impressions. For the silicones, impression techniques were also compared. To determine the impression materials' accuracy, digital photographs of the master model and of the stone casts were taken and the discrepancies between them were measured. The data were subjected to analysis of variance and Duncan's complementary test. Polyether and addition silicone following the single-phase technique were statistically different from alginate, condensation silicone and addition silicone following the double-mix technique (p < .05), presenting smaller discrepancies. However, condensation silicone was similar (p > .05) to alginate and addition silicone following the double-mix technique, but different from polysulfide. The results led to the conclusion that different impression materials and techniques influenced the stone casts' accuracy in a way that polyether, polysulfide and addition silicone following the single-phase technique were more accurate than the other materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to test the hypothesis that the addition of continuous or milled GdAlO(3)/Al(2)O(3) fibers to a dental porcelain increases its mechanical properties. Porcelain bars without reinforcement (control) were compared to those reinforced with long fibers (30 vol%). Also, disk specimens reinforced with milled fibers were produced by adding 0 (control), 5 or 10 vol% of particles. The reinforcement with continuous fibers resulted in significant increase in the uniaxial flexural strength from 91.5 to 217.4 MPa. The addition of varied amounts of milled fibers to the porcelain did not significantly affect its biaxial flexural strength compared to the control group. SEM analysis showed that the interface between the continuous fiber and the porcelain was free of defects. On the other hand, it was possible to note the presence of cracks surrounding the milled fiber/porcelain interface. In conclusion, the reinforcement of the porcelain with continuous fibers resulted in an efficient mechanism to increase its mechanical properties; however the addition of milled fibers had no significant effect on the material because the porcelain was not able to wet the ceramic particles during the firing cycle. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives. To evaluate the effect of the microstructure on the Weibull and slow crack growth (SCG) parameters and on the lifetime of three ceramics used as framework materials for fixed partial dentures (FPDs) (YZ - Vita In-Ceram YZ; IZ - Vita In-Ceram Zirconia; AL - Vita In-Ceram AL) and of two veneering porcelains (VM7 and VM9). Methods. Bar-shaped specimens were fabricated according to the manufacturer`s instructions. Specimens were tested in three-point flexure in 37 degrees C artificial saliva. Weibull analysis (n = 30) and a constant stress-rate test (n = 10) were used to determine the Weibull modulus (m) and SCG coefficient (n), respectively. Microstructural and fractographic analyzes were performed using SEM. ANOVA and Tukey`s test (alpha = 0.05) were used to statistically analyze data obtained with both microstructural and fractographic analyzes. Results. YZ and AL presented high crystalline content and low porosity (0.1-0.2%). YZ had the highest characteristic strength (sigma(0)) value (911 MPa) followed by AL (488 MPa) and IZ (423 MPa). Lower sigma(0) values were observed for the porcelains (68-75 MPa). Except for IZ and VM7, m values were similar among the ceramic materials. Higher n values were found for YZ (76) and AL (72), followed by IZ (54) and the veneering materials (36-44). Lifetime predictions showed that YZ was the material with the best mechanical performance. The size of the critical flaw was similar among the framework materials (34-48 mu m) and among the porcelains (75-86 mu m). Significance. The microstructure influenced the mechanical and SCG behavior of the studied materials and, consequently, the lifetime predictions. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Chipping within veneering porcelain has resulted in high clinical failure rates for implant-supported zirconia (yttria-tetragonal zirconia polycrystals [Y-TZP]) bridges. This study evaluated the reliability and failure modes of mouth-motion step-stress fatigued implant-supported Y-TZP versus palladium-silver alloy (PdAg) three-unit bridges. Materials and Methods: Implant-abutment replicas were embedded in polymethylmethacrylate resin. Y-TZP and PdAg frameworks, of similar design (n = 21 each), were fabricated, veneered, cemented (n = 3 each), and Hertzian contact-tested to obtain ultimate failure load. In each framework group, 18 specimens were distributed across three step-stress profiles and mouth-motion cyclically loaded according to the profile on the lingual slope of the buccal cusp of the pontic. Results: PdAg failures included competing flexural cracking at abutment and/or connector area and chipping, whereas Y-TZP presented predominantly cohesive failure within veneering porcelain. Including all failure modes, the reliability (two-sided at 90% confidence intervals) for a ""mission"" of 50,000 and 100,000 cycles at 300 N load was determined (Alta Pro, Reliasoft, Tucson, AZ, USA). No difference in reliability was observed between groups for a mission of 50,000. Reliability remained unchanged for a mission of 100,000 for PdAg, but significantly decreased for Y-TZP. Conclusions: Higher reliability was found for PdAg for a mission of 100,000 cycles at 300 N. Failure modes differed between materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: To evaluate the effect of framework design on the fatigue life and failure modes of metal ceramic (MC, Ni-Cr alloy core, VMK 95 porcelain veneer), glass-infiltrated alumina (ICA, In-Ceram Alumina/VM7), and veneered yttria-stabilized tetragonal zirconia polycrystals (Y-TZP, IPSe.max ZirCAD/IPS e.max,) crowns. Methods: Sixty composite resin tooth replicas of a prepared maxillary first molar were produced to receive crowns systems of a standard (MCs, ICAs, and Y-TZPs, n = 10 each) or a modified framework design (MCm, ICAm, and Y-TZPm, n = 10 each). Fatigue loading was delivered with a spherical steel indenter (3.18 mm radius) on the center of the occlusal surface using r-ratio fatigue (30-300 N) until completion of 10(6) cycles or failure. Fatigue was interrupted every 125,000 cycles for damage evaluation. Weibull distribution fits and contour plots were used for examining differences between groups. Failure mode was evaluated by light polarized and SEM microscopy. Results: Weibull analysis showed the highest fatigue life for MC crowns regardless of framework design. No significant difference (confidence bound overlaps) was observed between ICA and Y-TZP with or without framework design modification. Y-TZPm crowns presented fatigue life in the range of MC crowns. No porcelain veneer fracture was observed in the MC groups, whereas ICAs presented bulk fracture and ICAm failed mainly through the veneer. Y-TZP crowns failed through chipping within the veneer, without core fractures. Conclusions: Framework design modification did not improve the fatigue life of the crown systems investigated. Y-TZPm crowns showed comparable fatigue life to MC groups. Failure mode varied according to crown system. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives To compare the reliability of the disto-facial (DF) and mesio-lingual (ML) cusps of an anatomically correct zirconia (Y-TZP) crown system The research hypotheses tested were (1) fatigue reliability and failure mode are similar for the ML and DF cusps, (2) failure mode of one cusp does not affect the failure of the other Methods The average dimensions of a mandibular first molar crown were imported into CAD software, a tooth preparation was modelled by 1 5 mm marginal high reduction of proximal walls and occlusal surface by 2 0 mm The CAD-based tooth preparation was milled and used as a die to fabricate crowns (n = 14) with porcelain veneer on a 0 5 mm Y-TZP core. Crowns were cemented on composite reproductions of the tooth preparation The crowns were step-stress mouth motion fatigued with sliding (0 7 mm) a tungsten-carbide indenter of 6 25 mm diameter down on the inclines of either the DF or ML cusps Use level probability Weibull curve with use stress of 200 N and the reliability for completion of a mission of 50,000 cycles at 200 N load were calculated Results Reliability for a 200 N at 50,000 cycles mission was not different between tested cusps SEM imaging showed large cohesive failures within the veneer for the ML and smaller for the DF Fractures originated from the contact area regardless of the cusp loaded Conclusion No significant difference on fatigue reliability was observed between the DF compared to the ML cusp Fracture of one cusp did not affect the other (c) 2010 Elsevier Ltd All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: The aim of this research was to evaluate the fatigue behavior and reliability of monolithic computer-aided design/computer-assisted manufacture (CAD/CAM) lithium disilicate and hand-layer-veneered zirconia all-ceramic crowns. Materials and Methods: A CAD-based mandibular molar crown preparation, fabricated using rapid prototyping, served as the master die. Fully anatomically shaped monolithic lithium disilicate crowns (IPS e.max CAD, n = 19) and hand-layer-veneered zirconia-based crowns (IPS e.max ZirCAD/Ceram, n = 21) were designed and milled using a CAD/CAM system. Crowns were cemented on aged dentinlike composite dies with resin cement. Crowns were exposed to mouth-motion fatigue by sliding a WC-indenter (r = 3.18 mm) 0.7 mm lingually down the distobuccal cusp using three different step-stress profiles until failure occurred. Failure was designated as a large chip or fracture through the crown. If no failures occurred at high loads (> 900 N), the test method was changed to staircase r ratio fatigue. Stress level probability curves and reliability were calculated. Results: Hand-layer-veneered zirconia crowns revealed veneer chipping and had a reliability of < 0.01 (0.03 to 0.00, two-sided 90% confidence bounds) for a mission of 100,000 cycles and a 200-N load. None of the fully anatomically shaped CAD/CAM-fabricated monolithic lithium disilicate crowns failed during step-stress mouth-motion fatigue (180,000 cycles, 900 N). CAD/CAM lithium disilicate crowns also survived r ratio fatigue (1,000,000 cycles, 100 to 1,000 N). There appears to be a threshold for damage/bulk fracture for the lithium disilicate ceramic in the range of 1,100 to 1,200 N. Conclusion: Based on present fatigue findings, the application of CAD/CAM lithium disilicate ceramic in a monolithic/fully anatomical configuration resulted in fatigue-resistant crowns, whereas hand-layer-veneered zirconia crowns revealed a high susceptibility to mouth-motion cyclic loading with early veneer failures. Int J Prosthodont 2010; 23: 434-442.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: This study compared the reliability and fracture patterns of zirconia cores veneered with pressable porcelain submitted to either axial or off-axis sliding contact fatigue. Methods: Forty-two Y-TZP plates (12 mm x 12 mm x 0.5 mm) veneered with pressable porcelain (12 mm x 12 mm x 1.2 mm) and adhesively luted to water aged composite resin blocks (12 mm x 12 mm x 4 mm) were stored in water at least 7 days prior to testing. Profiles for step-stress fatigue (ratio 3:2:1) were determined from single load to fracture tests (n = 3). Fatigue loading was delivered on specimen either on axial (n = 18) or off-axis 30 degrees angulation (n = 18) to simulate posterior tooth cusp inclination creating a 0.7 mm slide. Single load and fatigue tests utilized a 6.25 mm diameter WC indenter. Specimens were inspected by means of polarized-light microscope and SEM. Use level probability Weibull curves were plotted with 2-sided 90% confidence bounds (CB) and reliability for missions of 50,000 cycles at 200 N (90% CB) were calculated. Results: The calculated Weibull Beta was 3.34 and 2.47 for axial and off-axis groups, respectively, indicating that fatigue accelerated failure in both loading modes. The reliability data for a mission of 50,000 cycles at 200 N load with 90% CB indicates no difference between loading groups. Deep penetrating cone cracks reaching the core-veneer interface were observed in both groups. Partial cones due to the sliding component were observed along with the cone cracking for the off-axis group. No Y-TZP core fractures were observed. Conclusions: Reliability was not significantly different between axial and off-axis mouth-motion fatigued pressed over Y-TZP cores, but incorporation of sliding resulted in more aggressive damage on the veneer. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluated the stress levels at the core layer and the veneer layer of zirconia crowns (comprising an alternative core design vs. a standard core design) under mechanical/thermal simulation, and subjected simulated models to laboratory mouth-motion fatigue. The dimensions of a mandibular first molar were imported into computer-aided design (CAD) software and a tooth preparation was modeled. A crown was designed using the space between the original tooth and the prepared tooth. The alternative core presented an additional lingual shoulder that lowered the veneer bulk of the cusps. Finite element analyses evaluated the residual maximum principal stresses fields at the core and veneer of both designs under loading and when cooled from 900 degrees C to 25 degrees C. Crowns were fabricated and mouth-motion fatigued, generating master Weibull curves and reliability data. Thermal modeling showed low residual stress fields throughout the bulk of the cusps for both groups. Mechanical simulation depicted a shift in stress levels to the core of the alternative design compared with the standard design. Significantly higher reliability was found for the alternative core. Regardless of the alternative configuration, thermal and mechanical computer simulations showed stress in the alternative core design comparable and higher to that of the standard configuration, respectively. Such a mechanical scenario probably led to the higher reliability of the alternative design under fatigue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluated the effect of core-design modification on the characteristic strength and failure modes of glass-infiltrated alumina (In-Ceram) (ICA) compared with porcelain fused to metal (PFM). Premolar crowns of a standard design (PFMs and ICAs) or with a modified framework design (PFMm and ICAm) were fabricated, cemented on dies, and loaded until failure. The crowns were loaded at 0.5 mm min(-1) using a 6.25 mm tungsten-carbide ball at the central fossa. Fracture load values were recorded and fracture analysis of representative samples were evaluated using scanning electron microscopy. Probability Weibull curves with two-sided 90% confidence limits were calculated for each group and a contour plot of the characteristic strength was obtained. Design modification showed an increase in the characteristic strength of the PFMm and ICAm groups, with PFM groups showing higher characteristic strength than ICA groups. The PFMm group showed the highest characteristic strength among all groups. Fracture modes of PFMs and of PFMm frequently reached the core interface at the lingual cusp, whereas ICA exhibited bulk fracture through the alumina core. Core-design modification significantly improved the characteristic strength for PFM and for ICA. The PFM groups demonstrated higher characteristic strength than both ICA groups combined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the increasing utilization of all-ceramic crown systems, their mechanical performance relative to that of metal ceramic restorations (MCR) has yet to be determined. This investigation tested the hypothesis that MCR present higher reliability over two Y-TZP all-ceramic crown systems under mouth-motion fatigue conditions. A CAD-based tooth preparation with the average dimensions of a mandibular first molar was used as a master die to fabricate all restorations. One 0.5-mm Pd-Ag and two Y-TZP system cores were veneered with 1.5 mm porcelain. Crowns were cemented onto aged (60 days in water) composite (Z100, 3M/ESPE) reproductions of the die. Mouth-motion fatigue was performed, and use level probability Weibull curves were determined. Failure modes of all systems included chipping or fracture of the porcelain veneer initiating at the indentation site. Fatigue was an acceleration factor for all-ceramic systems, but not for the MCR system. The latter presented significantly higher reliability under mouth-motion cyclic mechanical testing.