5 resultados para Fan-Complete Space
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A neighbourhood assignment in a space X is a family O = {O-x: x is an element of X} of open subsets of X such that X is an element of O-x for any x is an element of X. A set Y subset of X is a kernel of O if O(Y) = U{O-x: x is an element of Y} = X. We obtain some new results concerning dually discrete spaces, being those spaces for which every neighbourhood assignment has a discrete kernel. This is a strictly larger class than the class of D-spaces of [E.K. van Douwen, W.F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (2) (1979) 371-377]. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper we study n-dimensional complete spacelike submanifolds with constant normalized scalar curvature immersed in semi-Riemannian space forms. By extending Cheng-Yau`s technique to these ambients, we obtain results to such submanifolds satisfying certain conditions on both the squared norm of the second fundamental form and the mean curvature. We also characterize compact non-negatively curved submanifolds in De Sitter space of index p.
Resumo:
In this paper we give a partially affirmative answer to the following question posed by Haizhong Li: is a complete spacelike hypersurface in De Sitter space S(1)(n+1)(c), n >= 3, with constant normalized scalar curvature R satisfying n-2/nc <= R <= c totally umbilical? (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In Information Visualization, adding and removing data elements can strongly impact the underlying visual space. We have developed an inherently incremental technique (incBoard) that maintains a coherent disposition of elements from a dynamic multidimensional data set on a 2D grid as the set changes. Here, we introduce a novel layout that uses pairwise similarity from grid neighbors, as defined in incBoard, to reposition elements on the visual space, free from constraints imposed by the grid. The board continues to be updated and can be displayed alongside the new space. As similar items are placed together, while dissimilar neighbors are moved apart, it supports users in the identification of clusters and subsets of related elements. Densely populated areas identified in the incSpace can be efficiently explored with the corresponding incBoard visualization, which is not susceptible to occlusion. The solution remains inherently incremental and maintains a coherent disposition of elements, even for fully renewed sets. The algorithm considers relative positions for the initial placement of elements, and raw dissimilarity to fine tune the visualization. It has low computational cost, with complexity depending only on the size of the currently viewed subset, V. Thus, a data set of size N can be sequentially displayed in O(N) time, reaching O(N (2)) only if the complete set is simultaneously displayed.
Resumo:
LetQ(4)( c) be a four-dimensional space form of constant curvature c. In this paper we show that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q(4)(c), c <= 0, whose Ricci curvature is bounded from below, is equal to zero. Further, we study the connected minimal hypersurfaces M(3) of a space form Q(4)( c) with constant Gauss-Kronecker curvature K. For the case c <= 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurfaces of Q(4)( c) with K constant.