93 resultados para Excitation-contraction coupling
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The present study describes the enzymatic properties and molecular identification of 5`-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K-m (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7 +/- 10.4 mu M and 134.8 +/- 32.1 mu M, with V-max values of 6.7 +/- 0.4 and 143.8 +/- 23.8 nmol P-i/min/mg of protein (means +/- S.D., n = 4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5`-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5`-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca2+ influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.
Resumo:
We present Monte Carlo simulations for a molecular motor system found in virtually all eukaryotic cells, the acto-myosin motor system, composed of a group of organic macromolecules. Cell motors were mapped to an Ising-like model, where the interaction field is transmitted through a tropomyosin polymer chain. The presence of Ca(2+) induces tropomyosin to block or unblock binding sites of the myosin motor leading to its activation or deactivation. We used the Metropolis algorithm to find the transient and the equilibrium states of the acto-myosin system composed of solvent, actin, tropomyosin, troponin, Ca(2+), and myosin-S1 at a given temperature, including the spatial configuration of tropomyosin on the actin filament surface. Our model describes the short- and long-range cooperativity during actin-myosin binding which emerges from the bending stiffness of the tropomyosin complex. We found all transition rates between the states only using the interaction energy of the constituents. The agreement between our model and experimental data also supports the recent theory of flexible tropomyosin.
Resumo:
Excitation functions of quasi-elastic scattering at backward angles have been measured for the (6,7)Li + (144)Sm systems at near-barrier energies, and fusion barrier distributions have been extracted from the first derivatives of the experimental cross sections with respect to the bombarding energies. The data have been analyzed in the framework of continuum discretized coupled-channel calculations, and the results have been obtained in terms of the influence exerted by the inclusion of different reaction channels, with emphasis on the role played by the projectile breakup.
Resumo:
The approach presented in this paper consists of an energy-based field-circuit coupling in combination with multi-physics simulation of the acoustic radiation of electrical machines. The proposed method is applied to a special switched reluctance motor with asymmetric pole geometry to improve the start-up torque. The pole shape has been optimized, subject to low torque ripple, in a previous study. The proposed approach here is used to analyze the impact of the optimization on the overall acoustic behavior. The field-circuit coupling is based on a temporary lumped-parameter model of the magnetic part incorporated into a circuit simulation based on the modified nodal analysis. The harmonic force excitation is calculated by means of stress tensor computation, and it is transformed to a mechanical mesh by mapping techniques. The structural dynamic problem is solved in the frequency domain using a finite-element modal analysis and superposition. The radiation characteristic is obtained from boundary element acoustic simulation. Simulation results of both rotor types are compared, and measurements of the drive are presented.
Resumo:
The pH-structure correlation of the products of aniline peroxydisulfate reaction was mainly investigated by resonance Raman spectroscopy. The reactions of aniline and ammonium peroxydisulfate were carried out in aqueous solutions of initial pH ranging from 4.9 to 13.2 and monomer/oxidant molar ratio of 4/1. For an initial pH of 4.9, the spectroscopic techniques showed that the emeraldine salt form of polyaniline (PANI-ES) is the main product, corroborating that the usual head-to-tail coupling mechanism is taking place. The resonance Raman spectra at 1064 nm exciting wavelength were useful to detect the emeraldine salt as a minor product for reactions at an initial pH of 5.3-11.5. The Raman spectra of the main product of the reaction at initial pH of 13.2 excited at 1064 and 413.1 nm showed new spectral features consistent with 1,4-Michael-type adducts of aniline monomers and 1,4-benzoquinone-monoimine unit. These compounds and their products of hydrolysis/oxidation are the predominant species for the reaction media of initial pH from 5.3 to 13.2. In order to get PANI with different nanoscale morphologies, a pH value of more than 0 or 1 was used in the aniline polymerization. The spectroscopic data obtained in this work reveal that head-to-tail coupling does not occur when aniline reacts at media pH higher than about 5. It is suggested that chemical structures of the products of aniline oxidation by an unusual mechanism are the driving force for the development of assorted morphologies. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
A new route to obtain the polyalkylated indole (+/-)-trans-trikentrin A was developed. The synthesis of this natural alkaloid features a thallium(III)mediated ring contraction reaction to obtain the trans-1,3-disubstituted five-membered ring in a diastereoselective manner. Thallium(III) is chemoselective in this rearrangement, reacting with the olefin without oxidation of the indole moiety. Other key transformations are the Bartoli`s reaction to construct the heterocyclic ring and a Heck coupling to add the carbons atom that will originate the nonaromatic cycle.
Metal-free synthesis of indanes by iodine(III)-mediated ring contraction of 1, 2-dihydronaphthalenes
Resumo:
A metal-free protocol was developed to synthesize indanes by ring contraction of 1, 2-dihydronaphthalenes promoted by PhI(OH)OTs (HTIB or Koser's reagent). This oxidative rearrangement can be performed in several solvents (MeOH, CH3CN, 2 , 2, 2-trifluoroethanol (TFE), 1 , 1, 1, 3, 3, 3-hexafluoroisopropanol (HFIP), and a 1:4 mixture of TFE:CH2Cl2) under mild conditions. The ring contraction diastereoselectively gives functionalized trans-1, 3-disubstituted indanes, which are difficult to obtain in synthetic organic chemistry
Resumo:
We investigate synchronization in a Kuramoto-like model with nearest neighbor coupling. Upon analyzing the behavior of individual oscillators at the onset of complete synchronization, we show that the time interval between bursts in the time dependence of the frequencies of the oscillators exhibits universal scaling and blows up at the critical coupling strength. We also bring out a key mechanism that leads to phase locking. Finally, we deduce forms for the phases and frequencies at the onset of complete synchronization.
Resumo:
Oscillator networks have been developed in order to perform specific tasks related to image processing. Here we analytically investigate the existence of synchronism in a pair of phase oscillators that are short-range dynamically coupled. Then, we use these analytical results to design a network able of detecting border of black-and-white figures. Each unit composing this network is a pair of such phase oscillators and is assigned to a pixel in the image. The couplings among the units forming the network are also dynamical. Border detection emerges from the network activity.
Resumo:
Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR Collaboration presents a measurement of rho(0) and direct pi(+)pi(-) photoproduction in ultraperipheral relativistic heavy ion collisions at root s(NN) = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross section of sigma(AuAu -> Au*Au*rho(0)) = 530 +/- 19(stat.) +/- 57(syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho 0 transverse momentum spectrum (p(T)(2)) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find sigma(inc)/sigma(coh) = 0.29 +/- 0.03 (stat.) +/- 0.08 (syst.). The ratio of direct pi(+)pi(-) to rho(0) production is comparable to that observed in gamma(p) collisions at HERA and appears to be independent of photon energy. Finally, the measured rho(0) spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.
Resumo:
We evaluate the mass of the B(s0) scalar meson and the coupling constant in the B(s0)BK vertex in the framework of QCD sum rules. We consider the B(s0) as a tetraquark state to evaluate its mass. We get m(Bs0) = (5.85 +/- 0.13) GeV, which is in agreement, considering the uncertainties, with predictions supposing it as a b (s) over bar state or a B (K) over bar bound state with J(P) = 0(+). To evaluate the g(Bs0BK) coupling, we use the three-point correlation functions of the vertex, considering B(s0) as a normal b (s) over bar state. The obtained coupling constant is: g(Bs0BK) = (16.3 +/- 3.2) GeV. This number is in agreement with light-cone QCD sum rules calculation. We have also compared the decay width of the B(s0) -> BK process considering the B(s0) to be a b (s) over bar state and a BK molecular state. The width obtained for the BK molecular state is twice as big as the width obtained for the b (s) over bar state. Therefore, we conclude that with the knowledge of the mass and the decay width of the B(s0) meson, one can discriminate between the different theoretical proposals for its structure.
Resumo:
We investigate the influence of couplings among continuum states in collisions of weakly bound nuclei. For this purpose, we compare cross sections for complete fusion, breakup, and elastic scattering evaluated by continuum discretized coupled channel (CDCC) calculations, including and not including these couplings. In our study, we discuss this influence in terms of the polarization potentials that reproduces the elastic wave function of the coupled channel method in single channel calculations. We find that the inclusion of couplings among continuum states renders the real part of the polarization potential more repulsive, whereas it leads to weaker absorption to the breakup channel. We show that the noninclusion of continuum-continuum couplings in CDCC calculations may lead to qualitative and quantitative wrong conclusions.
Resumo:
Magnetoresistance measurements were performed on an n-type PbTe/PbEuTe quantum well and weak antilocalization effects were observed. This indicates the presence of spin orbit coupling phenomena and we showed that the Rashba effect is the main mechanism responsible for this spin orbit coupling. Using the model developed by Iordanskii et al., we fitted the experimental curves and obtained the inelastic and spin orbit scattering times. Thus we could compare the zero field energy spin-splitting predicted by the Rashba theory with the energy spin-splitting obtained from the analysis of the experimental curves. The final result confirms the theoretical prediction of strong Rashba effect on IV-VI based quantum wells.
Resumo:
Using first-principles calculations it is demonstrated that Co doped graphenelike ZnO sheet presents ferromagnetic coupling. The Co atoms are energetically barrierless absorbed in the Zn sites, suffering a Jahn-Teller distortion. The results reveal that the origin of the ferromagnetic coupling, different from the bulk 3D ZnO stacking, is mainly guided by a direct exchange interaction without any additional defect. This ferromagnetic coupling is due to the system topology, namely, it is a direct consequence of the two-dimensional character of the ZnO monolayer within graphenelike structure. Increasing the number of ZnO layers the ferromagnetic coupling vanishes.
Resumo:
The quasi-elastic excitation function for the (17)O+(64)Zn system was measured at energies near and below the Coulomb barrier, at the backward angle theta(lab) = 161 degrees. The corresponding quasi-elastic barrier distribution was derived. The excitation function for the neutron stripping reactions was also measured, at the same angle and energies, and the experimental values of the spectroscopic factors were deduced by fitting the data. A reasonably good agreement was obtained between the experimental quasi-elastic barrier distribution with the coupled-channel calculations including a very large number of channels. Of the channels investigated, three dominated the coupling matrix: two inelastic channels, (64)Zn(2(1)(+)) and (17)O(1/(+)(2)), and one-neutron transfer channel, particularly the first one. On the other hand, a very good agreement is obtained when we use a nuclear diffuseness for the (17)O nucleus larger than the one for (16)O. We verify that quasi-elastic barrier distribution is a sensitive tool for determining nuclear matter diffuseness.