11 resultados para Exact constraint
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We construct exact vortex solutions in 3+1 dimensions to a theory which is an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the efforts in the last decades those are the first exact analytical solutions to be constructed for such type of theory. The exact vortices appear in a very particular sector of the theory characterized by special values of the coupling constants, and by a constraint that leads to an infinite number of conserved charges. The theory is scale invariant in that sector, and the solutions satisfy Bogomolny type equations. The energy of the static vortex is proportional to its topological charge, and waves can travel with the speed of light along them, adding to the energy a term proportional to a U(1) No ether charge they create. We believe such vortices may play a role in the strong coupling regime of the pure SU(2) Yang-Mills theory.
Resumo:
We construct and compare in this work a variety of simple models for strange stars, namely, hypothetical self-bound objects made of a cold stable version of the quark-gluon plasma. Exact, quasi-exact and numerical models are examined to find the most economical description for these objects. A simple and successful parametrization of them is given in terms of the central density, and the differences among the models are explicitly shown and discussed. In particular, we present a model starting with a Gaussian ansatz for the density profile that provides a very accurate and almost complete analytical integration of the problem, modulo a small difference for one of the metric potentials.
Resumo:
An organism is built through a series of contingent factors, yet it is determined by historical, physical, and developmental constraints. A constraint should not be understood as an absolute obstacle to evolution, as it may also generate new possibilities for evolutionary change. Modularity is, in this context, an important way of organizing biological information and has been recognized as a central concept in evolutionary biology bridging on developmental, genetics, morphological, biochemical, and physiological studies. In this article, we explore how modularity affects the evolution of a complex system in two mammalian lineages by analyzing correlation, variance/covariance, and residual matrices (without size variation). We use the multivariate response to selection equation to simulate the behavior of Eutheria and Metharia skulls in terms of their evolutionary flexibility and constraints. We relate these results to classical approaches based on morphological integration tests based on functional/developmental hypotheses. Eutherians (Neotropical primates) showed smaller magnitudes of integration compared with Metatheria (didelphids) and also skull modules more clearly delimited. Didelphids showed higher magnitudes of integration and their modularity is strongly influenced by within-groups size variation to a degree that evolutionary responses are basically aligned with size variation. Primates still have a good portion of the total variation based on size; however, their enhanced modularization allows a broader spectrum of responses, more similar to the selection gradients applied (enhanced flexibility). Without size variation, both groups become much more similar in terms of modularity patterns and magnitudes and, consequently, in their evolutionary flexibility. J. Exp. Zool. (Mol. Dev. Evol.) 314B:663-683, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.
Resumo:
The exchange energy of an arbitrary collinear-spin many-body system in an external magnetic field is a functional of the spin-resolved charge and current densities, E(x)[n(up arrow), n(down arrow), j(up arrow), j(down arrow)]. Within the framework of density-functional theory (DFT), we show that the dependence of this functional on the four densities can be fully reconstructed from either of two extreme limits: a fully polarized system or a completely unpolarized system. Reconstruction from the limit of an unpolarized system yields a generalization of the Oliver-Perdew spin scaling relations from spin-DFT to current-DFT. Reconstruction from the limit of a fully polarized system is used to derive the high-field form of the local-spin-density approximation to current-DFT and to magnetic-field DFT.
Resumo:
We study the influence of ferromagnetic and antiferromagnetic bond defects on the ground-state energy of antiferromagnetic spin chains. In the absence of translational invariance, the energy spectrum of the full Hamiltonian is obtained numerically, by an iterative modi. cation of the power algorithm. In parallel, approximate analytical energies are obtained from a local-bond approximation, proposed here. This approximation results in significant improvement upon the mean-field approximation, at negligible extra computational effort. (C) 2008 Published by Elsevier B.V.
Resumo:
In this work we study, under the Stratonovich definition, the problem of the damped oscillatory massive particle subject to a heterogeneous Poisson noise characterized by a rate of events, lambda(t), and a magnitude, Phi, following an exponential distribution. We tackle the problem by performing exact time averages over the noise in a similar way to previous works analysing the problem of the Brownian particle. From this procedure we obtain the long-term equilibrium distributions of position and velocity as well as analytical asymptotic expressions for the injection and dissipation of energy terms. Considerations on the emergence of stochastic resonance in this type of system are also set forth.
Exact penalties for variational inequalities with applications to nonlinear complementarity problems
Resumo:
In this paper, we present a new reformulation of the KKT system associated to a variational inequality as a semismooth equation. The reformulation is derived from the concept of differentiable exact penalties for nonlinear programming. The best theoretical results are presented for nonlinear complementarity problems, where simple, verifiable, conditions ensure that the penalty is exact. We close the paper with some preliminary computational tests on the use of a semismooth Newton method to solve the equation derived from the new reformulation. We also compare its performance with the Newton method applied to classical reformulations based on the Fischer-Burmeister function and on the minimum. The new reformulation combines the best features of the classical ones, being as easy to solve as the reformulation that uses the Fischer-Burmeister function while requiring as few Newton steps as the one that is based on the minimum.
Resumo:
Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.
Resumo:
Let M be a compact, connected non-orientable surface without boundary and of genus g >= 3. We investigate the pure braid groups P,(M) of M, and in particular the possible splitting of the Fadell-Neuwirth short exact sequence 1 -> P(m)(M \ {x(1), ..., x(n)}) hooked right arrow P(n+m)(M) (P*) under right arrow P(n)(M) -> 1, where m, n >= 1, and p* is the homomorphism which corresponds geometrically to forgetting the last m strings. This problem is equivalent to that of the existence of a section for the associated fibration p: F(n+m)(M) -> F(n)(M) of configuration spaces, defined by p((x(1), ..., x(n), x(n+1), ..., x(n+m))) = (x(1), ..., x(n)). We show that p and p* admit a section if and only if n = 1. Together with previous results, this completes the resolution of the splitting problem for surface pure braid groups. (C) 2009 Elsevier B.V. All rights reserved.