7 resultados para Europium(III) ion

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis, structural investigation, and photophysical properties of the complex [Tb(TTA)(2)(NO(3)) (TPPO)(2)] are reported. Unlike the analog tris-diketonate complex [Tb(TTA)(3)(TPPO)(2)], the new complex presents abnormally high luminescence intensity centered on the terbium ion. Our results clearly suggest a higher energy transfer efficiency from the TEA antenna ligand to the Tb(III) ion in the bis-diketonate complex compared with that in the tris-diketonate complex. A mechanism involving the increasing of triplet state energy when one TTA ligand is replaced by the NO(3)(-) group in the first coordination sphere is suggested and experimentally investigated to explain the anomalous luminescence properties of the new complex [Tb(TTA)(2)(NO(3))(TPPO)(2)]. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymers doped with rare earth complexes are advantaged in film production for many applications in the luminescent field. In this luminescent polycarbonate (PC) films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(TTA)(3)(H(2)O)(2)] were prepared and their calorimetric and luminescent properties in the solid state are reported. The thermal behavior was investigated by utilization of differential scanning calorimetry (DSC) and thermogravimetry (TG). Due of the addition of rare earth [Eu(TTA)(3)(H(2)O)(2)] into PC matrix, changes were observed in the thermal behavior concerning the glass transition and thermal stability. Characteristic broadened narrow bands arising from the (5)D(0) -> (7)F(J) transitions (J = 4-0) of Eu(3+) ion indicate the incorporation of the Eu(3+) ions in the polymer. The luminescent films show enhancement emission intensity with an increase of rare earth concentration in polymeric matrix accompanied by decrease in thermal stability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work reports the energy transfer mechanism process of [Eu(TTA)(2)(NO(3))(TPPO)(2)] (bis-TTA complex) and [Eu(TTA)(3)(TPPO)(2)] (tris-TTA complex) based on experimental and theoretical spectroscopic properties, where TTA = 2-thienoyltrifluoroacetone and TPPO = triphenylphosphine oxide. These complexes were synthesized and characterized by elemental analyses, infrared spectroscopy and thermogavimetric analysis. The theoretical complexes geometry data by using Sparkle model for the calculation of lanthanide complexes (SMLC) is in agreement with the crystalline structure determined by single-crystal X-ray diffraction analysis. The emission spectra for [Gd(TTA)(3)(TPPO)(2)] and [Gd(TTA)(2) (NO(3))(TPPO)(2)] complexes are associated to T -> S(0) transitions centered on coordinated TTA ligands. Experimental luminescent properties of the bis-TTA complex have been quantified through emission intensity parameters Omega(lambda)(lambda = 2 and 4), spontaneous emission rates (A(rad)), luminescence lifetime (tau), emission quantum efficiency (eta) and emission quantum yield (q), which were compared with those for tris-TTA complex. The experimental data showed that the intensity parameter value for bis-TTA complex is twice smaller than the one for tris-TTA complex, indicating the less polarizable chemical environment in the system containing nitrate ion. A good agreement between the theoretical and experimental quantum yields for both Eu(Ill) complexes was obtained. The triboluminescence (TL) of the [Eu(TTA)(2)(NO(3))(TPPO)(2)] complexes are discussed in terms of ligand-to-metal energy transfer. (c) 2007 Elsevier B.V. All fights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 degrees C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu(2)O(3), with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3457784]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al(2)O(3):Eu(3+)(1%) samples were prepared by combustion, ceramic, and Pechini methods annealed from 400 to 1400 degrees C. XRD patterns indicate that samples heated up to 1000 degrees C present disordered character of activated alumina (gamma-Al(2)O(3)). However, alpha-Al(2)O(3) phase showed high crystallinity and thermostability at 1200-1400 degrees C. The sample characterizations were also carried out by means of infrared spectroscopy (IR), scanning electron microscopy (SEM) and specific surface areas analysis (BET method). Excitation spectra of Al(2)O(3):Eu(3+) samples present broaden bands attributed to defects of Al(2)O(3) matrices and to LMCT state of O -> Eu(3+), however, the narrow bands are assigned to (7)F(0) -> (5)D(J),(5)H(J) and (5)L(J) transitions of Eu(3+) ion. Emission spectra of samples calcined up to 1000 degrees C show broaden bands for (5)D(0) -> (7)F(J) transitions of Eu(3+) ion suggesting that the rare earth ion is in different symmetry sites showed by inhomogeneous line broadening of bands, confirming the predominance of the gamma-alumina phase. For all samples heated from 1200 to 1400 degrees C the spectra exhibit narrow (5)D(0) -> (7)F(J) transitions of Eu(3+) ion indicating the conversion of gamma to alpha-Al(2)O(3) phases, a high intensity narrow peak around 695 nm assigned to R lines of Cr(3+) ion is shown. Al(2)O(3):Eu(3+) heated up to 1100 degrees C presents an increase in the Omega(2) intensity parameter with the increase of temperatures enhancing the covalent character of metal-donor interaction. The disordered structural systems present the highest values of emission quantum efficiencies (eta). CIE coordinates of Al(2)O(3):Eu(3+) are also discussed. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions of emeraldine base form of polyaniline (EB-PANI) and Eu(III) ions in 1-methyl-2-pyrrolidinone (NMP) solution and in films have been investigated by UV-vis-NIR, resonance Raman. luminescence and electron paramagnetic resonance (EPR) spectroscopies. These spectroscopic techniques allowed to characterize quinone and semiquinone segments in the polymeric chains. and the oxidation state of europium ions in Eu-PANI samples. For high values of Eu(III)/N molar ratio (24/1) the presence of a weak polaronic absorption band at 980 nm in UV-vis-NIR spectrum and the observation of bands at 1330 and 1378 (nu(center dot)(C-N+)) cm(-1) due to emeraldine salt in the Raman spectrum at 1064 nm indicate a low doping degree. Oxidation of EB-PANI to pernigraniline base (PB-PANI) occurs in diluted solutions. The experimental data showed that the solvent plays an important role on the nature of formed species. The narrow EPR signal at g = 2.006 (line width 8G) confirms the presence of PANI radical cations in Eu-PANI film. The absence of broad signal characteristic of Eu(II) in EPR spectrum suggested that europium ions are primarily at Eu(III) oxidation state. The luminescence spectra of Eu-PANI film presented emission bands at 405 and 418 nm assigned to PANI moieties and bands at 594,615 and 701 nm assigned to (5)D(0) -> (7)F(J) (J = 1, 2 and 4, respectively) transitions of Eu(III). EPR and photoluminescence data confirm that europium ions are mainly in Eu(III) oxidation state in Eu(III)/PANI films. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a series of tetrakis complexes C[Tm(acac)(4)] where C(+) = Li(+) Na(+) and K(+) countercations and acac = acetylacetonate ligand were synthesized and characterized for photoluminescence investigation The relevant aspect is that these complexes are water-free in the first coordination sphere The emission spectra of the tetrakis Tm(3+)-complexes present narrow bands characteristic of the (1)G(4)->(3)H(6) (479 nm) (1)G(4)->(3)F(4) (650 nm) and (1)G(4) ->(3)H(5) (779 nm) transitions of the Tm(3+) ion with the blue emission color at 479 nm as the most prominent one The lifetime values (tau) of the emitting (1)G(4) level of the C[Tm(acac)(4)] complexes were 344 360 and 400 ns for the Li(+) Na(+) and K(+) countercations respectively showing an increasing linear behavior versus the ionic radius of the alkaline ion An efficient intramolecular energy transfer process from the triplet state (T) of the ligands to the emitting (1)G(4) state of the Tm(3+) ion is observed This fact together with the absence of water molecules in first coordination sphere allows these tetrakis Tm(3+)-complexes to act as efficient blue light conversion molecular devices (c) 2010 Elsevier B V All rights reserved