178 resultados para Error Correction Models

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to analyze the dynamics of national saving-investment relationship in order to determine the degree of capital mobility in 12 Latin American countries. The analytically relevant correlation is the short-term one, defined as that between changes in saving and investment. Of special interest is the speed at which variables return to the long run equilibrium relationship, which is interpreted as being negatively related to the degree of capital mobility. The long run correlation, in turn, captures the coefficient implied by the solvency constraint. We find that heterogeneity and cross-section dependence completely change the estimation of the long run coefficient. Besides we obtain a more precise short run coefficient estimate compared to the existent estimates in the literature. There is evidence of an intermediate degree of capital mobility, and the coefficients are extremely stable over time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines the hysteresis hypothesis in the Brazilian industrialized exports using a time series analysis. This hypothesis finds an empirical representation into the nonlinear adjustments of the exported quantity to relative price changes. Thus, the threshold cointegration analysis proposed by Balke and Fomby [Balke, N.S. and Fomby, T.B. Threshold Cointegration. International Economic Review, 1997; 38; 627-645.] was used for estimating models with asymmetric adjustment of the error correction term. Amongst sixteen industrial sectors selected, there was evidence of nonlinearities in the residuals of long-run relationships of supply or demand for exports in nine of them. These nonlinearities represent asymmetric and/or discontinuous responses of exports to different representative measures of real exchange rates, in addition to other components of long-run demand or supply equations. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, we discuss inferential aspects of the measurement error regression models with null intercepts when the unknown quantity x (latent variable) follows a skew normal distribution. We examine first the maximum-likelihood approach to estimation via the EM algorithm by exploring statistical properties of the model considered. Then, the marginal likelihood, the score function and the observed information matrix of the observed quantities are presented allowing direct inference implementation. In order to discuss some diagnostics techniques in this type of models, we derive the appropriate matrices to assessing the local influence on the parameter estimates under different perturbation schemes. The results and methods developed in this paper are illustrated considering part of a real data set used by Hadgu and Koch [1999, Application of generalized estimating equations to a dental randomized clinical trial. Journal of Biopharmaceutical Statistics, 9, 161-178].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we provide a recipe for state protection in a network of oscillators under collective damping and diffusion. Our strategy is to manipulate the network topology, i.e., the way the oscillators are coupled together, the strength of their couplings, and their natural frequencies, in order to create a relaxation-diffusion-free channel. This protected channel defines a decoherence-free subspace (DFS) for nonzero-temperature reservoirs. Our development also furnishes an alternative approach to build up DFSs that offers two advantages over the conventional method: it enables the derivation of all the network-protected states at once, and also reveals, through the network normal modes, the mechanism behind the emergence of these protected domains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We build a model that incorporates the effect of the innovative ""flex"" car, an automobile that is able to run with either gasoline or alcohol, on the dynamics of fuel prices in Brazil. Our model shows that differences regarding fuel prices will now depend on the proportions of alcohol, gasoline and flex cars in the total stock. Conversely, the demand for each type of car will also depend on the expected future prices of alcohol and gasoline (in addition to the car prices). The model reflects our findings that energy prices are tied in the long run and that causality runs stronger from gasoline to alcohol. The estimated error correction parameter is stable, implying that the speed of adjustment towards equilibrium remains unchanged. The latter result is probably due to a still small fraction of flex cars in the total stock (approx. 5%), despite the fact that its sales nearly reached 100% in 2006. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main object of this paper is to discuss the Bayes estimation of the regression coefficients in the elliptically distributed simple regression model with measurement errors. The posterior distribution for the line parameters is obtained in a closed form, considering the following: the ratio of the error variances is known, informative prior distribution for the error variance, and non-informative prior distributions for the regression coefficients and for the incidental parameters. We proved that the posterior distribution of the regression coefficients has at most two real modes. Situations with a single mode are more likely than those with two modes, especially in large samples. The precision of the modal estimators is studied by deriving the Hessian matrix, which although complicated can be computed numerically. The posterior mean is estimated by using the Gibbs sampling algorithm and approximations by normal distributions. The results are applied to a real data set and connections with results in the literature are reported. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In general, the normal distribution is assumed for the surrogate of the true covariates in the classical error model. This paper considers a class of distributions, which includes the normal one, for the variables subject to error. An estimation approach yielding consistent estimators is developed and simulation studies reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to develop and validate equations to estimate the aboveground phytomass of a 30 years old plot of Atlantic Forest. In two plots of 100 m², a total of 82 trees were cut down at ground level. For each tree, height and diameter were measured. Leaves and woody material were separated in order to determine their fresh weights in field conditions. Samples of each fraction were oven dried at 80 °C to constant weight to determine their dry weight. Tree data were divided into two random samples. One sample was used for the development of the regression equations, and the other for validation. The models were developed using single linear regression analysis, where the dependent variable was the dry mass, and the independent variables were height (h), diameter (d) and d²h. The validation was carried out using Pearson correlation coefficient, paired t-Student test and standard error of estimation. The best equations to estimate aboveground phytomass were: lnDW = -3.068+2.522lnd (r² = 0.91; s y/x = 0.67) and lnDW = -3.676+0.951ln d²h (r² = 0.94; s y/x = 0.56).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to estimate the regressions calibration for the dietary data that were measured using the quantitative food frequency questionnaire (QFFQ) in the Natural History of HPV Infection in Men: the HIM Study in Brazil. A sample of 98 individuals from the HIM study answered one QFFQ and three 24-hour recalls (24HR) at interviews. The calibration was performed using linear regression analysis in which the 24HR was the dependent variable and the QFFQ was the independent variable. Age, body mass index, physical activity, income and schooling were used as adjustment variables in the models. The geometric means between the 24HR and the calibration-corrected QFFQ were statistically equal. The dispersion graphs between the instruments demonstrate increased correlation after making the correction, although there is greater dispersion of the points with worse explanatory power of the models. Identification of the regressions calibration for the dietary data of the HIM study will make it possible to estimate the effect of the diet on HPV infection, corrected for the measurement error of the QFFQ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objetivo foi estimar as regressões de calibração dos dados dietéticos mensurados pelo questionário quantitativo de freqüência alimentar (QQFA) utilizado no Natural History of HPV Infection in Men: o Estudo HIM. Uma amostra de 98 indivíduos do estudo HIM respondeu, por meio de entrevista, a um QQFA e três recordatórios de 24 horas (R24h). A calibração foi feita por meio de análise de regressão linear, tendo os R24h como variável dependente e o QQFA como variável independente. Idade, índice de massa corporal, atividade física, renda e escolaridade foram utilizadas como variáveis de ajuste nos modelos. As médias geométricas dos R24h e do QQFA corrigido pela calibração são estatisticamente iguais. Os gráficos de dispersão entre os instrumentos demonstraram aumento da correlação após a correção dos dados, porém observa-se maior dispersão dos pontos de acordo com a piora do poder explicativo dos modelos. A identificação das regressões de calibração dos dados dietéticos do estudo HIM permitirá a estimativa do efeito da dieta sobre a infecção por HPV, corrigida pelo erro de medida do QQFA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, I investigate the use of Bayesian updating rules applied to modeling how social agents change their minds in the case of continuous opinion models. Given another agent statement about the continuous value of a variable, we will see that interesting dynamics emerge when an agent assigns a likelihood to that value that is a mixture of a Gaussian and a uniform distribution. This represents the idea that the other agent might have no idea about what is being talked about. The effect of updating only the first moments of the distribution will be studied, and we will see that this generates results similar to those of the bounded confidence models. On also updating the second moment, several different opinions always survive in the long run, as agents become more stubborn with time. However, depending on the probability of error and initial uncertainty, those opinions might be clustered around a central value.