2 resultados para Equipaments culturals -- Andalusia -- Granada

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Granada ignimbrite, an Upper Miocene volcanic unit from the northern Puna, previously has been interpreted as an extensive ignimbrite (>2300 km(2)) associated with eruptions from the Vilama caldera (trap-door event). On the basis of new data, we revise its correlation and redefine the unit as a compound, high aspect ratio ignimbrite, erupted at approximately 9.8 Ma. Calculated volumes (similar to 100 km(3)) are only moderate in comparison with other large volume (>1000 km(3)) ignimbrites that erupted approximately 2-6 m.y. later in the region (e.g. Vilama, Panizos, Atana). Six new volcanic units are recognized from sequences previously correlated with Granada (only one sourced from the same center). Consequently, the area ascribed to the Granada ignimbrite is substantially reduced (630 km(2)), and links to the Vilama caldera are not supported. Transport directions suggest the volcanic source for the Granada ignimbrite corresponds to vents buried under younger (>= 7.9-5 Ma) volcanic rocks of the Abra Granada volcanic complex. Episodes of caldera collapse at some stage of eruption are likely, though their nature and timing cannot be defined from available data. The eruption of the Granada ignimbrite marks the onset of a phase of large volume (caldera-sourced) volcanism in the northern Puna. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method was optimized for the analysis of omeprazole (OMZ) by ultra-high speed LC with diode array detection using a monolithic Chromolith Fast Gradient RP 18 endcapped column (50 x 2.0 mm id). The analyses were performed at 30 degrees C using a mobile phase consisting of 0.15% (v/v) trifluoroacetic acid (TFA) in water (solvent A) and 0.15% (v/v) TFA in acetonitrile (solvent B) under a linear gradient of 5 to 90% B in 1 min at a flow rate of 1.0 mL/min and detection at 220 nm. Under these conditions, OMZ retention time was approximately 0.74 min. Validation parameters, such as selectivity, linearity, precision, accuracy, and robustness, showed results within the acceptable criteria. The method developed was successfully applied to OMZ enteric-coated pellets, showing that this assay can be used in the pharmaceutical industry for routine QC analysis. Moreover, the analytical conditions established allow for the simultaneous analysis of OMZ metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in the same run, showing that this method can be extended to other matrixes with adequate procedures for sample preparation.