321 resultados para Electronic-state
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The electronic (UV-vis) and resonance Raman (RR) spectra of a series of para-substituted trans-beta-nitrostyrenes were investigated to determine the influence of the electron donating properties of the substituent (X = H, NO2, COOH, Cl, OCH3, OH, N(CH3)(2), and O-) on the extent of the charge transfer to the electron-withdrawing NO2 group directly linked to the ethylenic (C=C) unit. The Raman spectra and quantum chemical calculations show clearly the correlation of the electron donating power of the X group with the wavenumbers of the nu(s)(NO2) and nu (C=C)(sty) normal modes. In conditions of resonance with the lowest excited electronic state, one observes for X = OH and N(CH3)2 that the symmetric stretching of the NO2. nu(s)(NO2), is the most substantially enhanced mode, whereas for X = O-, the chromophore is extended over the whole molecule, with substantial enhancement of several carbon backbone modes. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Iodine vapor is a very suitable substance to learn about molecular energy levels and transitions, and to introduce spectroscopic techniques. As a diatomic molecule its spectra are relatively simple and allow straightforward treatment of the data leading to the potential energy curves and to quantum mechanics concepts. The overtone bands, in the resonance Raman scattering, and the band progressions, in the electronic spectra, play an important role in the calculation of the Morse potential curves for the fundamental and excited electronic state. A weaker chemical bond in the electronic excited state, compared to the fundamental state, is evidenced by the increase in the equilibrium interatomic distance. The resonance Raman scattering of I2 is highlighted due to its importance for obtaining the anharmonicity constant in the fundamental electronic state.
Resumo:
In this work, we present the synthesis and characterization of a hybrid nanocomposite constituted by iron oxide nanoparticles and vanadium oxide/Hexadecylamine (VO(x)/Hexa) nanotubes. Transmission Electron Microscopy (TEM) images show small particles (around 20 nm) in contact with the external wall of the multiwall tubes, which consist of alternate layers of VO(x) and Hexa. By Energy Dispersive Spectroscopy (EDS), we detected iron ions within the tube walls and we have also established that the nanoparticles are composed of segregated iron oxide. The samples were studied by Electron Paramagnetic Resonances (EPR) and dc-magnetization as a function of the magnetic field. The analysis of the magnetization and EPR data confirms that a fraction of the V atoms are in the V(4+) electronic state and that the nanoparticles exhibit a superparamagnetic behavior. The percentage of V and Fe present in the nanocomposite was determined using Instrumental Neutron Activation Analysis (INAA). (C) 2008 Elsevier B.V. All rights reserved.
Bichromophoric behavior of nitrophenyl-triazene anions: a resonance Raman spectroscopy investigation
Resumo:
Highly delocalized molecular frameworks with intense charge transfer transitions, known as push-pull systems, are of central interest in many areas of chemistry, as is the case of nitrophenyl-triazene derivatives. The 1,3-bis(2-nitrophenyl)triazene and 1,3-bis(4-nitrophenyl)triazene were investigated by electronic (UV-Vis) and resonance Raman (RR) spectroscopies. The bichromophoric behavior of 1,3-bis(4-nitrophenyl)triazene anion opens the possibility of tuning with visible radiation, two distinct electronic states. The RR profiles of nitrophenyl-triazene derivatives clearly show that the first allowed electronic state can be assigned to a charge transfer from the ring pi system to the NO2 moiety (ca 520 nm), while the second, as a charge transfer from N-3(-) to the aromatic ring (ca 390 nm). In the para-substituted derivative, a more efficient electron transfer and a greater energy separation between the two excited states are observed. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Electronic polarization of the acetone molecule in the excited n -> pi* state is considered and its influence on the solvent shift in the emission spectrum is analyzed. Using an iterative procedure the electronic polarizations of both the ground and the excited states are included and compared with previous results obtained with Car-Parrinello dynamics. Analysis of the emission transition obtained using CIS(D)/aug-cc-pVDZ on statistically uncorrelated solute-solvent structures, composed of acetone and twelve explicit water molecules embedded in the electrostatic field of remaining 263 water molecules, corroborates that the solvent effect is mild, calculated here between 80 and 380 cm (1). (c) 2010 Published by Elsevier B.V.
Resumo:
The State Reform processes combined with the emergence and use of Information and Communication Technology (ICT) originated electronic government policies and initiatives in Brazil. This paper dwells on Brazilian e-government by investigating the institutional design it assumed in the state's public sphere, and how it contributed to outcomes related to e-gov possibilities. The analyses were carried out under an interpretativist perspective by making use of Institutional Theory. From the analyses of interviews with relevant actors in the public sphere, such as state secretaries and presidents of public ICT companies, conclusions point towards low institutionalization of e-gov policies. The institutional design of Brazilian e-gov limits the use of ICT to provide integrated public services, to amplify participation and transparency, and to improve public policies management.
Resumo:
We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.
Resumo:
The valence and core levels of In(2)O(3) and Sn-doped In(2)O(3) have been studied by hard x-ray photoemission spectroscopy (hv = 6000 eV) and by conventional Al K alpha (hv = 1486.6 eV) x-ray photoemission spectroscopy. The experimental spectra are compared with density-functional theory calculations. It is shown that structure deriving from electronic levels with significant In or Sn 5s character is selectively enhanced under 6000 eV excitation. This allows us to infer that conduction band states in Sn-doped samples and states at the bottom of the valence band both contain a pronounced In 5s contribution. The In 3d core line measured at hv = 1486.6 eV for both undoped and Sn-doped In(2)O(3) display an asymmetric lineshape, and may be fitted with two components associated with screened and unscreened final states. The In 3d core line spectra excited at hv = 6000 eV for the Sn-doped samples display pronounced shoulders and demand a fit with two components. The In 3d core line spectrum for the undoped sample can also be fitted with two components, although the relative intensity of the component associated with the screened final state is low, compared to excitation at 1486.6 eV. These results are consistent with a high concentration of carriers confined close to the surface of nominally undoped In(2)O(3). This conclusion is in accord with the fact that a conduction band feature observed for undoped In(2)O(3) in Al K alpha x-ray photoemission is much weaker than expected in hard x-ray photoemission.
Resumo:
The low-lying doublet and quartet electronic states of the species SeF correlating with the first dissociation channel are investigated theoretically at a high-level of electronic correlation treatment, namely, the complete active space self-consistent field/multireference single and double excitations configuration interaction (CASSCF/MRSDCI) using a quintuple-zeta quality basis set including a relativistic effective core potential for the selenium atom. Potential energy curves for (Lambda+S) states and the corresponding spectroscopic properties are derived that allows for an unambiguous assignment of the only spectrum known experimentally as due to a spin-forbidden X (2)Pi-a (4)Sigma(-) transition, and not a A (2)Pi-X (2)Pi transition as assumed so far. For the bound excited doublets, yet unknown experimentally, this study is the first theoretical characterization of their spectroscopic properties. Also the spin-orbit coupling constant function for the X (2)Pi state is derived as well as the spin-orbit coupling matrix element between the X (2)Pi and a (4)Sigma(-) states. Dipole moment functions and vibrationally averaged dipole moments show SeF to be a very polar species. An overview of the lowest-lying spin-orbit (Omega) states completes this description. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3426315]
Resumo:
Diabetes mellitus (DM) is a disease that affects a large number of people, and the number of problems associated with the disease has been increasing in the past few decades. These problems include cardiovascular disorders, blindness and the eventual need to amputate limbs. Therefore, the quality of life for people living with DM is less than it is for healthy people. In several cases, metabolic syndrome (MS), which can be considered a disturbance of the lipid metabolism, is associated with DM. In this work, two drugs used to treat DM, pioglitazone and rosiglitazone, were studied using theoretical methods, and their molecular properties were related to the biological activity of these drugs. From the results, it was possible to correlate the properties of each substance-particularly electronic properties-with the biological interactions that are linked to their pharmacological effects. These results suggest that there are future prospects for designing or developing new drugs based on the correlation between theoretical and experimental properties.
Resumo:
This paper deals with the problem of state prediction for descriptor systems subject to bounded uncertainties. The problem is stated in terms of the optimization of an appropriate quadratic functional. This functional is well suited to derive not only the robust predictor for descriptor systems but also that for usual state-space systems. Numerical examples are included in order to demonstrate the performance of this new filter. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the innovation approach is used to estimate the measurement total error associated with power system state estimation. This is required because the power system equations are very much correlated with each other and as a consequence part of the measurements errors is masked. For that purpose an index, innovation index (II), which provides the quantity of new information a measurement contains is proposed. A critical measurement is the limit case of a measurement with low II, it has a zero II index and its error is totally masked. In other words, that measurement does not bring any innovation for the gross error test. Using the II of a measurement, the masked gross error by the state estimation is recovered; then the total gross error of that measurement is composed. Instead of the classical normalised measurement residual amplitude, the corresponding normalised composed measurement residual amplitude is used in the gross error detection and identification test, but with m degrees of freedom. The gross error processing turns out to be very simple to implement, requiring only few adaptations to the existing state estimation software. The IEEE-14 bus system is used to validate the proposed gross error detection and identification test.
Resumo:
This paper presents a new methodology to estimate unbalanced harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The problem solving algorithm herein proposed makes use of data from various power quality meters, which can either be synchronized by high technology GPS devices or by using information from a fundamental frequency load flow, what makes the overall power quality monitoring system much less costly. The ES based harmonic estimation model is applied to a 14 bus network to compare its performance to a conventional Monte Carlo approach. It is also applied to a 50 bus subtransmission network in order to compare the three-phase and single-phase approaches as well as the robustness of the proposed method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a new methodology to estimate harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The main advantage in using such a technique relies upon its modeling facilities as well as its potential to solve fairly complex problems. The problem-solving algorithm herein proposed makes use of data from various power-quality (PQ) meters, which can either be synchronized by high technology global positioning system devices or by using information from a fundamental frequency load flow. This second approach makes the overall PQ monitoring system much less costly. The algorithm is applied to an IEEE test network, for which sensitivity analysis is performed to determine how the parameters of the ES can be selected so that the algorithm performs in an effective way. Case studies show fairly promising results and the robustness of the proposed method.
Resumo:
Thyristor-based onload tap-changing ac voltage stabilizers are cheap and robust. They have replaced most mechanical tap-changers in low voltage applications from 300 VA to 300 M. Nevertheless, this replacement hardily applies to tap-changers associated to transformers feeding medium-voltage lines (typically 69 kV primary, 34.5 kV line, 10 MVA) which need periodical maintenance of contacts and oil. The Electric Power Research Institute (EPRI) has studied the feasibility of this replacement. It detected economical problems derived from the need for series association of thyristors to manage the high voltages involved, and from the current overload developed under line fault. The paper reviews the configurations used in that field and proposes new solutions, using a compensating transformer in the main circuit and multi-winding coils in the commutating circuit, with reduced overload effect and no series association of thyristors, drastically decreasing their number and rating. The stabilizer can be installed at any point of the line and the electronic circuit can be fixed to ground. Subsequent works study and synthesize several commutating circuits in detail.