3 resultados para Electricity generation performance test

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In testing from a Finite State Machine (FSM), the generation of test suites which guarantee full fault detection, known as complete test suites, has been a long-standing research topic. In this paper, we present conditions that are sufficient for a test suite to be complete. We demonstrate that the existing conditions are special cases of the proposed ones. An algorithm that checks whether a given test suite is complete is given. The experimental results show that the algorithm can be used for relatively large FSMs and test suites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy intensity of the total primary energy supply (TPES), total final energy consumption (TFC) and LOSSES in the conversion from TPES to TFC were analyzed for the World, OECD and Rest of the World (ROW) countries. LOSSES increased significantly for all groups of countries due to the increase of electricity production from coal in the period studied (1971-2008). Electricity share final consumption almost doubled, increasing from 8.8% to 17.2% in the period studied. However the energy intensity of LOSSES remained practically constant, which reflects the fact that the efficiency of electricity generation from coal (the main source of electricity) remained practically constant in that period. Despite the attractiveness of end-use devices running on electricity such as computers, which is typical of modern societies, the CO(2) emissions are bound to increase unless coal is replaced by less carbon emitting sources such as natural gas, renewables and nuclear energy. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we consider a classical problem of complete test generation for deterministic finite-state machines (FSMs) in a more general setting. The first generalization is that the number of states in implementation FSMs can even be smaller than that of the specification FSM. Previous work deals only with the case when the implementation FSMs are allowed to have the same number of states as the specification FSM. This generalization provides more options to the test designer: when traditional methods trigger a test explosion for large specification machines, tests with a lower, but yet guaranteed, fault coverage can still be generated. The second generalization is that tests can be generated starting with a user-defined test suite, by incrementally extending it until the desired fault coverage is achieved. Solving the generalized test derivation problem, we formulate sufficient conditions for test suite completeness weaker than the existing ones and use them to elaborate an algorithm that can be used both for extending user-defined test suites to achieve the desired fault coverage and for test generation. We present the experimental results that indicate that the proposed algorithm allows obtaining a trade-off between the length and fault coverage of test suites.