124 resultados para Dye N719

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical removals of color and organic load from solutions containing the dye reactive orange 16 (RO16) were performed in an electrochemical flow-cell, using a platinum working electrode. The influence of the process variables flow-rate, such as NaCl concentration, applied potential and solution pH, were studied. The best color removal achieved was 93% (λ = 493 nm) after 60 min at 2.2 V vs. RHE electrolysis, using 1.00 g L-1 NaCl as supporting electrolyte. The rises in the concentration of NaCl and applied potential increased the color removal rate. The best total organic carbon removal (57%) was obtained at 1.8 V, without the separating membrane, indicating that the ideal conditions for the color removal are not necessarily the same as those to remove the total organic carbon. The degradation efficiency decreased with the solution pH decrease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addressed the use of conventional and vegetable origin polyurethane foams to extract C. I. Acid Orange 61 dye. The quantitative determination of the residual dye was carried out with an UV/Vis absorption spectrophotometer. The extraction of the dye was found to depend on various factors such as pH of the solution, foam cell structure, contact time and dye and foam interactions. After 45 days, better results were obtained for conventional foam when compared to vegetable foam. Despite presenting a lower percentage of extraction, vegetable foam is advantageous as it is considered a polymer with biodegradable characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: We sought to investigate the wound-healing process after photodynamic therapy (PDT) mediated by methylene blue dye (MB). Background Data: Few scientific studies show the PDT roles in wound healing. Materials and Methods: One hundred rats were given a circular wound on the back, inflicted with a 6-mm-diameter punch. The animals were divided into four groups: control (no treatment); dye (topical application of MB); laser (InGaAlP, 117.85 J/cm(2), 100 mW, 660 nm, single point); and PDT (topical application of MB followed by laser irradiation). After 1, 3, 5, 7, and 14 days, the cutaneous wounds were photographed and assessed with histopathologic examination by using light microscope. Changes seen in edema, necrosis, inflammation, granulation tissue, re-epithelialization, and number of young fibroblasts were semiquantitatively evaluated. The wound-area changes were measured with special software and submitted to statistical analysis. Results: The laser group demonstrated the smallest wound area at 14 days after the surgical procedure (p<0.01). Concerning complete re-epithelialization, the laser group showed it at 5-7 days after surgery, whereas the PDT and the other groups showed it at 14 days. Conclusions: Laser interaction with tissue is somehow changed when exposed to the MB. PDT mediated by MB was not prejudicial to wound healing, as no delay occurred compared with the control group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation of black dye commercial product (BDCP) composed of C.I. Disperse Blue 373, C.I. Disperse Orange 37, C.I. Disperse Violet 93 dyes was investigated by photoelectrocatalysis process. The dyes have shown high mutagenic activity with Salmonella strain YG1041 and TA98 with and without S9. Samples of BCPD dye submitted to conventional chlorination and photoelectrocatalytic oxidation were compared monitoring its products by HPLC using a diode array detector, spectrophotometry UV-vis, TOC removal, and mutagenicity potency. The photoelectrocatalytic method operating with Ti/TiO(2) as anode at +1.0 V and UV illumination presented fast oxidation of test solutions containing 10 mg L(-1) of dye in 0.1 mol L(-1) NaCl pH 4.0 leading to 100% of discoloration, 67% of mineralization, and negative response to all tested Salmonella strains. The formation of Cl(aEuro cent), CL(2) (aEuro cent) on photoelectrocatalytic medium improved the efficiency of the method in relation to conventional chlorination method that promoted 100% of discoloration, but only 8% of TOC removal and more mutagenic product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Azo dyes constitute the largest group of colorants used in industry and can pass through municipal waste water plants nearly unchanged due to their resistance to aerobic treatment, which potentially exposes humans and local biota to adverse effects. Unfortunately, little is known about their environmental fate. Under anaerobic conditions, some azo dyes are cleaved by microorganisms forming potentially carcinogenic aromatic amines. In the present study, the azo dye Disperse Orange 1, widely used in textile dyeing, was tested using the comet, Salmonella/microsome mutagenicity, cell viability, Daphnia similis and Microtox (R) assays. The human hepatoma cell line (HepG2) was used in the comet assay and for cell viability. In the mutagenicity assay. Salmonella typhimurium strains with different levels of nitroreductase and o-acetyltransferase were used. The dye showed genotoxic effects with respect to HepG2 cells at concentrations of 0.2, 0.4, 1.0, 2.0 and 4.0 mu g/mL. In the mutagenicity assay, greater responses were obtained with the strains TA98 and YG1041, suggesting that this compound mainly induces frameshift mutations. Moreover, the mutagenicity was greatly enhanced with the strains overproducing nitroreductase and o-acetyltransferase, showing the importance of these enzymes in the mutagenicity of this dye. In addition, the compound induced apoptosis after 72 h in contact with the HepG2 cells. No toxic effects were observed for either D. similis or Vibrio fischeri. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we studied the oxidation of the azo dye Disperse orange 3 (DO3) by hydrogen peroxide, catalyzed by 5,10,15, 20-tetrakis(4-N-methylpyridyl)porphyrin iron(III) chloride immobilized onto montmorillonite K10, FeP-K10. Results showed that the FeP-K10/H2O2 system is efficient for discoloration of the DO3 dye, especially at pH 3.0. The catalyst was shown to be relatively stable and could be recycled many times, leading to good yields. DO3 oxidation products were analyzed by gas chromatography and mass spectrometry, being 4-nitroaniline the main product. Tert-butylhydroperoxide and iodosylbenzene were also used as oxidants, giving rise to 4-nitroaniline as product too. The studied system is a good biomimetic model of oxidative enzymes, being a promising discoloring agent for azo dyes. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation of acid black 210 dye (AB-210) on the boron-doped diamond (BDD) was investigated under different pH conditions. The best performance for the AB-210 oxidation occurred in alkaline phosphate solution. This is probably due to oxidizing agents such as phosphate radicals and peroxodiphosphate ions, which can be electrochemically produced with good yields on the BDD anode, mainly in alkaline solution. Under this condition, the COD (chemical oxygen demand) removal was higher than that obtained from the model proposed by Comninellis. Electrolyses performed in phosphate buffer and in the presence of chloride ions resulted in faster COD and color removals in acid and neutral solutions, but in alkaline phosphate solution, a better performance in terms of TOC removal was obtained in the absence of chloride. Moreover, organochloride compounds were detected in all electrolyses performed in the presence of chloride. The AB-210 electrooxidation on BDD using phosphate as supporting electrolyte proved to be interesting since oxidizing species generated from phosphate ions were able to completely degrade the dye without producing organochloride compounds. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient compact TiO(2) films using different polyeleetrolytes are prepared by the layer-by-layer technique (LbL) and applied as an effective contact and blocking film in dye-sensitized solar cells (DSCs). The polyanion thermal stability plays a major role on the compact layers, which decreases back electron transfer processes and current losses at the FTO/TiO(2) interface. FESEM images show that polyelectrolytes such is sodium sullonated polystyrene (PSS) and sulfonated lignin (SE), in comparison to poly(acrylic acid) (FAA), ensure an adequate morphology for the LbL TiO(2) layer deposited before the mesoporous film, even triter the sintering step at 450 degrees C. The so treated photoanode in DSCs leads to a 30% improvement On the overall conversion efficiency. Electrochemical impedance spectroscopy (EIS) is employed to ascertain the role of die compact films with such polyelectrolytes. The significant increase in V(oc) of the solar cells with adequate polyelectrolytes in the LbL TiO(2) films shows their pivotal role in decreasing the electron recombination at the FTO surface and enhancing the electrical contact of FTO with the mesoporous TiO(2) layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reliable and fast sensor for in vitro evaluation of solar protection factors (SPFs) of cosmetic products, based on the photobleaching kinetics of a nanocrystalline TiO(2)/dye UV-dosimeter, has been devised. The accuracy, robustness and suitability of the new device was demonstrated by the excellent matching of the predicted and the in vivo results up to SPF 70, for four standard samples analyzed in blind. These results strongly suggest that our device can be useful for routine SPF evaluation in laboratories devoted to the development or production of cosmetic formulations, since the conventional in vitro methods tend to exhibit unacceptably high errors above SPF similar to 30 and the conventional in vivo methods tend to be expensive and exceedingly time consuming. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carra sawdust pretrated with formaldehyde was used to adsorb RR239 (reactive azo dye) at varying pH and zerovalent iron (ZVI) dosage. Modeling of kinetic results shows that sorption process is best described by the pseudo-second-order model. Batch experiments suggest that the decolorization efficiency was strongly enhanced with the presence of ZVI and low solution pH. The kinetics of dye sorption by mixed sorbent (5 g of sawdust and 180 mg of ZVI) at pH 2.0 was rapid, reaching more than 90% of the total discoloration in three minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide has been extensively used in photocatalysis and dye-sensitized solar cells, where control of the anatase-to-rutile phase transformation may allow the realization of more efficient devices exploiting the synergic effects at anatase/rutile interfaces. Thus, a systematic study showing the proof of concept of a dye-induced morphological transition and an anatase-to-rutile transition based on visible laser (532 nm) and nano/micro patterning of mesoporous anatase (Degussa P25 TiO(2)) films is described for the first time using a confocal Raman microscope. At low laser intensities, only the bleaching of the adsorbed N3 dye was observed. However, high enough temperatures to promote melting/densification processes and create a deep hole at the focus and an extensive phase transformation in the surrounding material were achieved using Is laser pulses of 25-41 mW/cm(2), in resonance with the MLCT band. The dye was shown to play a key role, being responsible for the absorption and efficient conversion of the laser light into heat. As a matter of fact, the dye is photothermally decomposed to amorphous carbon or to gaseous species (CO(x), NO(x), and H(2)O) under a N(2) or O(2) atmosphere, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of anatase and rutile domains on nanocrystalline films of P25 TiO(2), as well as the distinct coordination modes of carboxylates on those phases, were revealed by confocal Raman microscopy, a technique that showed to be suitable for imaging the chemical morphology down to submicrometric size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge recombination at the conductor substrate/electrolyte interface has been prevented by using efficient blocking layers of TiO(2) compact films in dye-sensitized solar cell photoanodes. Compact blocking layers have been deposited before the mesoporous TiO(2) film by the layer-by-layer technique using titania nanoparticles as cations and sodium sulfonated polystyrene, PSS, as a polyanion. The TiO(2)/PSS blocking layer in a DSC prevents the physical contact of FTO and the electrolyte and leads to a 28% increase in the cell`s overall conversion efficiency, from 5.7% to 7.3%. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 thin films, employed in dye-sensitized solar cells, were prepared by the sol-gel method or directly by Degussa P25 oxide and their surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of adsorption of the cis-[Ru(dcbH(2))(2)(NCS)(2)] dye, N3, on the surface of films was investigated. From XPS spectra taken before and after argon-ion sputtering procedure, the surface composition of inner and outer layers of sensitized films was obtained and a preferential etching of Ru peak in relation to the Ti and N ones was identified. The photoelectrochemical parameters were also evaluated and rationalized in terms of the morphological characteristics of the films. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic degradation of Janus Green B azo dye over silver modified titanium dioxide films was investigated by surface-enhanced Raman spectroscopy (SERS). An optimized SERS-active substrate was employed to study the photodegradation reaction of Janus Green B. Considering that photocatalytic degradation processes of organic molecules adsorbed on TiO2 might involve either their oxidation or reduction reaction, the vibrational spectroelectrochemical study of the dye was also performed, in order to clarify the transformations involved in initial steps of its photochemical decomposition. In order to understand the changes in Raman spectra of Janus Green B after photodegradation and/or electrochemical processes, a vibrational assignment of the main Raman active modes of the dye was carried out, based on a detailed resonance Raman profile. Products formed by electrochemical and photochemical degradation processes were compared. The obtained results revealed that the first steps of the degradation process of Janus Green B involve a reductive mechanism. (C) 2007 Published by Elsevier B.V.