13 resultados para Drug analysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The determination of minoxidil (MX) with potassium permanganate as a carrier in a flow injection method is described. The detection at 550nm was linear from 1.0x10-5 to 5.0x10-4mol L-1. The limit of detection (3 sigma/slope) was 8.92x10-6mol L-1, with an analytical frequency of 32h-1. The proposed method was applied to commercial samples, with recoveries from 104.7 to 106.4%. Comparison with the HPLC procedure reveled relative errors from 0.48 to 1.4%, and the results agreed within a 95% confidence level.
Resumo:
Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair(NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gamma H2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase II alpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.
Resumo:
Several protease inhibitors have reached the world market in the last fifteen years, dramatically improving the quality of life and life expectancy of millions of HIV-infected patients. In spite of the tremendous research efforts in this area, resistant HIV-1 variants are constantly decreasing the ability of the drugs to efficiently inhibit the enzyme. As a consequence, inhibitors with novel frameworks are necessary to circumvent resistance to chemotherapy. In the present work, we have created 3D QSAR models for a series of 82 HIV-1 protease inhibitors employing the comparative molecular field analysis (CoMFA) method. Significant correlation coefficients were obtained (q(2) = 0.82 and r(2) = 0.97), indicating the internal consistency of the best model, which was then used to evaluate an external test set containing 17 compounds. The predicted values were in good agreement with the experimental results, showing the robustness of the model and its substantial predictive power for untested compounds. The final QSAR model and the information gathered from the CoMFA contour maps should be useful for the design of novel anti-HIV agents with improved potency.
Resumo:
Lectins have been classified into a structurally diverse group of proteins that bind carbohydrates and glycoconjugates with high specificity. They are extremely useful molecules in the characterization of saccharides, as drug delivery mediators, and even as cellular surface makers. In this study, we present camptosemin, a new lectin from Camptosema ellipticum. It was characterized as an N-acetyl-d-galactosamine-binding homo-tetrameric lectin, with a molecular weight around 26 kDa/monomers. The monomers were stable over a wide range of pH values and exhibited pH-dependent oligomerization. Camptosemin promoted adhesion of breast cancer cells and hemagglutination, and both activities were inhibited by its binding of sugar. The stability and unfolding/folding behavior of this lectin was characterized using fluorescence and far-UV circular dichroism spectroscopies. The results indicate that chemical unfolding of camptosemin proceeds as a two-state monomer-tetramer process. In addition, small-angle X-ray scattering shows that camptosemin behaves as a soluble and stable homo-tetramer molecule in solution.
Resumo:
For the first time, crystals of suitable size for X-ray diffractometry structure determination (Dian important anti-HI V drug were prepared under solvothermal conditions. In this study, the crystal structure of didanosine (2`,3`-dideoxyinosine, ddI) in the form of a hydrate was determined using single-crystal X-ray diffractometry. Powder X-ray diffraction analysis revealed that the solid-state phase of the drug incorporated into pharmaceutical solid dosage forms is isostructural to the solvothermally prepared ddI material, even though they do not exhibit an identical chemical composition due to different water fractions occupying hydrophobic channels formed within the crystal lattice. Two ddI conformers are present in the structure, in agreement with a previous structure elucidation attempt. Concerning the keto enol equilibrium of ddI, our crystal data and vibrational characterizations by Fourier transform infrared (FTIR) and FT-Raman spectroscopy techniques were conclusive to state that both conformers exist in the keto form, contrary to solid-state NMR spectroscopic assignments that suggested ddI molecules occur as enol tautomers. In addition, characterizations by thermal (differential scanning calorimetry) and spectroscopic techniques allowed us to understand the structural similarities and the differences related to the hydration pattern of the nonstoichiometric hydrates.
Resumo:
In the present work, the thermal behavior of prednicarbate was studied using DSC and TG/DTG. The solid product remaining at the first decomposition step of the drug was isolated by TG, in air and N(2) atmospheres and was characterized using LC-MS/MS, NMR, and IR spectroscopy. It was found that the product at the first thermal decomposition step of prednicarbate corresponds to the elimination of the carbonate group bonding to C(17), and a consequent formation of double bond between C(17) and C(16). Structure elucidation of this degradation product by spectral data has been discussed in detail.
Resumo:
Powder mixtures (1:1) of tibolone polymorphic forms I (monoclinic) and II (triclinic) and excipients have been prepared and compacted. The samples were stored at 50 degrees C and 90% RH for one month and subsequently were evaluated using differential scanning calorimetry (DSC) and high-performance liquid chromatography (HPLC). The results indicate that during the compaction, the applied pressure reduced the chemical stability of tibolone in both polymorph forms. The triclinic form was more chemically unstable, both pure and in contact with excipients, than the monoclinic form. Lactose monohydrate was shown to reduce chemical degradation for both forms. Ascorbyl palmitate was shown to affect the tibolone stability differently depending on the polymorphic form used.
Resumo:
Differential Scanning Calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG) and infrared spectroscopy (IR) techniques were used to investigate the compatibility between prednicarbate and several excipients commonly used in semi solid pharmaceutical form. The thermoanalytical studies of 1:1 (m/m) drug/excipient physical mixtures showed that the beginning of the first thermal decomposition stage of the prednicarbate (T (onset) value) was decreased in the presence of stearyl alcohol and glyceryl stearate compared to the drug alone. For the binary mixture of drug/sodium pirrolidone carboxilate the first thermal decomposition stage was not changed, however the DTG peak temperature (T (peak DTG)) decreased. The comparison of the IR spectra of the drug, the physical mixtures and of the thermally treated samples confirmed the thermal decomposition of prednicarbate. By the comparison of the thermal profiles of 1:1 prednicarbate:excipients mixtures (methylparaben, propylparaben, carbomer 940, acrylate crosspolymer, lactic acid, light liquid paraffin, isopropyl palmitate, myristyl lactate and cetyl alcohol) no interaction was observed.
Resumo:
Thermal analysis has been extensively used to obtain information about drug-polymer interactions and to perform pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles of poly(D,L-lactide-co-glycolide) (PLGA) containing ciprofloxacin hydrochloride (CP) in various drug:polymer ratios were obtained by spray drying. The main purpose of this study was to investigate the effect of the spray drying process on the drug-polymer interactions and on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG) and infrared spectroscopy (IR). The results showed that the high levels of encapsulation efficiency were dependant on drug:polymer ratio. DSC and TG/DTG analyses showed that for physical mixtures of the microparticles components the thermal profiles were different from those signals obtained with the pure substances. Thermal analysis data disclosed that physical interaction between CP and PLGA in high temperatures had occurred. The DSC and TG profiles for drug-loaded microparticles were very similar to the physical mixtures of components and it was possible to characterize the thermal properties of microparticles according to drug content. These data indicated that the spray dryer technique does not affect the physicochemical properties of the microparticles. In addition, the results are in agreement with IR data analysis demonstrating that no significant chemical interaction occurs between CP and PLGA in both physical mixtures and microparticles. In conclusion, we have found that the spray drying procedure used in this work can be a secure methodology to produce CP-loaded microparticles. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A graphite-polyurethane composite electrode has been used for the determination of furosemide, a antihypertensive drug, in pharmaceutical samples by anodic oxidation. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrooxidation process at +1.0 V vs. SCE over a wide pH range, with the result that no adsorption of analyte or products occurs, unlike at other carbon-based electrode materials. Quantification was carried out using cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry. Linear ranges were determined (up to 21 mu mol L-1 with cyclic voltammetry) as well as limits of detection (0.15 mu mol L-1 by differential pulse voltammetry). Four different types of commercial samples were successfully analyzed. Recovery tests were performed which agreed with those obtained by spectrophotometric evaluation. The advantages of this electrode material for repetitive analyzes, due to the fact that no electrode surface renewal is needed owing to the lack of adsorption, are highlighted.
Resumo:
Tuberculosis (TB) is one of the most common infectious diseases known to man and responsible for millions of human deaths in the world. The increasing incidence of TB in developing countries, the proliferation of multidrug resistant strains, and the absence of resources for treatment have highlighted the need of developing new drugs against TB. The shikimate pathway leads to the biosynthesis of chorismate, a precursor of aromatic amino acids. This pathway is absent from mammals and shown to be essential for the survival of Mycobacterium tuberculosis, the causative agent of TB. Accordingly, enzymes of aromatic amino acid biosynthesis pathway represent promising targets for structure-based drug design. The first reaction in phenylalanine biosynthesis involves the conversion of chorismate to prephenate, catalyzed by chorismate mutase. The second reaction is catalyzed by prephenate dehydratase (PDT) and involves decarboxylation and dehydratation of prephenate to form phenylpyruvate, the precursor of phenylalanine. Here, we describe utilization of different techniques to infer the structure of M. tuberculosis PDT (MtbPDT) in solution. Small angle X-ray scattering and ultracentrifugation analysis showed that the protein oligomeric state is a tetramer and MtbPDT is a flat disk protein. Bioinformatics tools were used to infer the structure of MtbPDT A molecular model for MtbPDT is presented and molecular dynamics simulations indicate that MtbPDT i.s stable. Experimental and molecular modeling results were in agreement and provide evidence for a tetrameric state of MtbPDT in solution.
Resumo:
A column switching LC method is presented for the analysis of fluoxetine (FLU) and norfluoxetine (NFLU) by direct injection of human plasma using a lab-made restricted access media (RAM) column. A RAM-BSA-octadecyl silica (C-18) column (40 min x 4.6 mm, 10 mu m) is evaluated in both backflush and foreflush elution modes and coupled with a C-18 lab-made (50 mm x 4.6 mm, 3 pm) analytical column in order to perform online sample preparation. Direct injection of 100 mu L, of plasma samples is possible with the developed approach. In addition, reduction of sample handling is obtained when compared with traditional liquid-liquid extraction (LLE) and SPE. The total analysis time is around 20 min. A LOQ of 15 ng/mL is achieved in a concentration range of 15-500 ng/mL, allowing the therapeutic drug monitoring of clinical samples. The precision values achieved are lower than 15% for all the evaluated points with adequate recovery and accuracy. Furthermore, no matrix interferences are found in the analysis and the proposed method shows to be an adequate alternative for analysis of FLU in plasma.