90 resultados para Distributed fiber optic sensors

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite element analysis and a parametric optimization of single-axis acoustic levitators are presented. The finite element method is used to simulate a levitator consisting of a Langevin ultrasonic transducer with a plane radiating surface and a plane reflector. The transducer electrical impedance, the transducer face displacement, and the acoustic radiation potential that acts on small spheres are determined by the finite element method. The numerical electrical impedance is compared with that acquired experimentally by an impedance analyzer, and the predicted displacement is compared with that obtained by a fiber-optic vibration sensor. The numerical acoustic radiation potential is verified experimentally by placing small spheres in the levitator. The same procedure is used to optimize a levitator consisting of a curved reflector and a concave-faced transducer. The numerical results show that the acoustic radiation force in the new levitator is enhanced 604 times compared with the levitator consisting of a plane transducer and a plane reflector. The optimized levitator is able to levitate 3, 2.5-mm diameter steel spheres with a power consumption of only 0.9 W.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three patients with progressive visual loss, chronic alcoholism and tabagism were submitted to a complete neuro-ophthalmic examination and to retinal nerve fiber layer (RNFL) measurements using optical coherence tomography (OCT) scanning. Two patients showed marked RNFL loss in the temporal sector of the optic disc. However, a third patient presented RNFL measurements within or above normal limits, based on the Stratus-OCT normative database. Such findings may be due to possible RNFL edema similar to the one that may occur in the acute phase of toxic optic neuropathies. Stratus-OCT was able to detect RNFL loss in the papillomacular bundle of patients with tobacco-alcohol-induced toxic optic neuropathy. However, interpretation must be careful when OCT does not show abnormality in order to prevent diagnostic confusion, since overestimation of RNFL thickness measurements is possible in such cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modal filters may be obtained by a properly designed weighted sum of the output signals of an array of sensors distributed on the host structure. Although several research groups have been interested in techniques for designing and implementing modal filters based on a given array of sensors, the effect of the array topology on the effectiveness of the modal filter has received much less attention. In particular, it is known that some parameters, such as size, shape and location of a sensor, are very important in determining the observability of a vibration mode. Hence, this paper presents a methodology for the topological optimization of an array of sensors in order to maximize the effectiveness of a set of selected modal filters. This is done using a genetic algorithm optimization technique for the selection of 12 piezoceramic sensors from an array of 36 piezoceramic sensors regularly distributed on an aluminum plate, which maximize the filtering performance, over a given frequency range, of a set of modal filters, each one aiming to isolate one of the first vibration modes. The vectors of the weighting coefficients for each modal filter are evaluated using QR decomposition of the complex frequency response function matrix. Results show that the array topology is not very important for lower frequencies but it greatly affects the filter effectiveness for higher frequencies. Therefore, it is possible to improve the effectiveness and frequency range of a set of modal filters by optimizing the topology of an array of sensors. Indeed, using 12 properly located piezoceramic sensors bonded on an aluminum plate it is shown that the frequency range of a set of modal filters may be enlarged by 25-50%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research employs solid-state actuators for delay of flow separation seen in airfoils at low Reynolds numbers. The flow control technique investigated here is aimed for a variable camber airfoil that employs two active surfaces and a single four-bar (box) mechanism as the internal structure. To reduce separation, periodic excitation to the flow around the leading edge of the airfoil is induced by a total of nine piezocomposite actuated clamped-free unimorph benders distributed in the spanwise direction. An electromechanical model is employed to design an actuator capable of high deformations at the desired frequency for lift improvement at post-stall angles. The optimum spanwise distribution of excitation for increasing lift coefficient is identified experimentally in the wind tunnel. A 3D (non-uniform) excitation distribution achieved higher lift enhancement in the post-stall region with lower power consumption when compared to the 2D (uniform) excitation distribution. A lift coefficient increase of 18.4% is achieved with the identified non-uniform excitation mode at the bender resonance frequency of 125 Hz, the flow velocity of 5 m/s and at the reduced frequency of 3.78. The maximum lift (Clmax) is increased 5.2% from the baseline. The total power consumption of the flow control technique is 639 mW(RMS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have a vast field of applications, including deployment in hostile environments. Thus, the adoption of security mechanisms is fundamental. However, the extremely constrained nature of sensors and the potentially dynamic behavior of WSNs hinder the use of key management mechanisms commonly applied in modern networks. For this reason, many lightweight key management solutions have been proposed to overcome these constraints. In this paper, we review the state of the art of these solutions and evaluate them based on metrics adequate for WSNs. We focus on pre-distribution schemes well-adapted for homogeneous networks (since this is a more general network organization), thus identifying generic features that can improve some of these metrics. We also discuss some challenges in the area and future research directions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed control systems consist of sensors, actuators and controllers, interconnected by communication networks and are characterized by a high number of concurrent process. This work presents a proposal for a procedure to model and analyze communication networks for distributed control systems in intelligent building. The approach considered for this purpose is based on the characterization of the control system as a discrete event system and application of coloured Petri net as a formal method for specification, analysis and verification of control solutions. With this approach, we develop the models that compose the communication networks for the control systems of intelligent building, which are considered the relationships between the various buildings systems. This procedure provides a structured development of models, facilitating the process of specifying the control algorithm. An application example is presented in order to illustrate the main features of this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To compare the ability of Subjective assessment of optic nerve head (ONH) and retinal nerve fiber layer (RNFL) by general ophthalmologists and by a glaucoma expert with objective measurements by optical coherence tomography (Stratus OCT, Carl Zeiss Meditec Inc), confocal scanning laser ophthalmoscope (HRT III; Heidelberg Engineering, Heidelberg. Germany), and scanning laser polarimetry (GDx enhanced corneal compensation; Carl Zeiss Meditec Inc, Dublin, CA) in discriminating glaucomatous and normal eyes. Methods: Sixty-one glaucomatous and 57 normal eyes or 118 subjects Were included in the study. Three independent general ophthalmologists and I glaucoma expert evaluated ONH stereo-photographs. Receiver operating characteristic curves were constructed for each imaging technique and sensitivity at fixed specificity was estimated. Comparisons or areas under these curves (aROCs) and agreement (k) were determined between stereophoto grading and best parameter from each technique. Results: Best parameter from each technique showed larger aROC (Stratus OCT RNFL 0.92; Stratus OCT ONH vertical integrated area = 0.86; Stratus OCT macular thickness = 0.82; GDx enhanced corneal compensation = 0.91, HRT3 global cup-to-disc ratio = 0.83; HRT3 glaucoma probability score numeric area score 0.83) compared with stereophotograph grading by general ophthalmologists (0.80) in separating glaucomatous and normal eyes. Glaucoma expert stereophoto grading provided equal or larger aROC (0.92) than best parameter of each computerized imaging device. Stereophoto evaluated by a glaucoma expert showed better agreement with best parameter of each quantitative imaging technique in classifying eyes either as glaucomatous or normal compared with stereophoto grading by general ophthalmologists, The combination Of Subjective assessment of the optic disc by general ophthalmologists with RNFL objective parameters improved identification of glaucoma patients in a larger proportion than the combination of these objective parameters with Subjective assessment of the optic disc by a glaucoma expert (29.5% vs. 19.7%, respectively). Conclusions: Diagnostic ability of all imaging techniques showed better performance than subjective assessment of the ONH by general ophthalmologists, but not by It glaucoma expert, Objective RNFL measurements may provide improvement in glaucoma detection when combined with subjective assessment of the optic disc by general ophthalmologists or by a glaucoma expert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To compare the ability of Fourier-domain (FD) optical coherence tomography (3D OCT-1000; Top, con, Tokyo, Japan) and time domain (TD) OCT (Stratus; Carl Zeiss Meditec Inc, Dublin, California, USA) to detect axonal loss in eyes with band atrophy (BA) of the optic nerve. DESIGN: Cross-sectional study. METHODS: Thirty-six eyes from 36 patients with BA and temporal visual field (VF) defect from chiasmal compression and 36 normal eyes were studied. Subjects were submitted to standard automated perimetry and macular and retinal nerve fiber layer (RNFL) measurements were taken using 3D OCT-1000 and Stratus OCT. Receiver operating characteristic (ROC) curves were calculated for each parameter. Spearman correlation coefficients were obtained to evaluate the relationship between RNFL and macular thickness parameters and severity of VF loss. Measurements from the two devices were compared. RESULTS: Regardless of OCT device, all RNFL and macular thickness parameters were significantly lower in eyes with BA compared with normal eyes, but no statistically significant difference was found with regard to the area under the ROC curve. Structure-function relationships were also similar for the two devices. In both groups, RNFL and macular thickness measurements were generally and in some cases significantly smaller with 3D OCT-1000 than with Stratus OCT. CONCLUSIONS: The introduction of FD technology did not lead to better discrimination ability for detecting BA of the optic nerve compared with TD technology when using the software currently provided by the manufacturer. 3D OCT-1000 FD OCT RNFL and macular measurements were generally smaller than TD Stratus OCT measurements. Investigators should be aware of this fact when comparing measurements obtained with these two devices. (Am J Oplathalmol 2009;147: 56-63. (c) 2009 by Elsevier Inc. All rights reserved.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To compare the ability of scanning laser polarimeter (SLP) with variable corneal compensation (GDx VCC) and optical coherence tomograph (Stratus OCT) to discriminate between eyes with band atrophy (BA) of the optic nerve and healthy eyes. Methods The study included 37 eyes with BA and temporal visual field (VF) defects from chiasmal compression, and 29 normal eyes. Subjects underwent standard automated perimetry (SAP) and retinal nerve fibre layer (RNFL) scans using GDx VCC and Stratus OCT. The severity of the VF defects was evaluated by the temporal mean defect (TMD), calculated as the average of 22 values of the temporal total deviation plot on SAP. Receiver operating characteristic (ROC) curves were calculated. Pearson`s correlation coefficients were used to evaluate the relationship between RNFL thickness parameters and the TMD. Results No significant difference was found between the ROC curves areas (AUCs) for the GDx VCC and Stratus OCT with regard to average RNFL thickness (0.98 and 0.99, respectively) and the superior (0.94; 0.95), inferior (0.96; 0.97), and nasal (0.92; 0.96) quadrants. However, the AUC in the temporal quadrant (0.77) was significantly smaller (P < 0.001) with GDx VCC than with Stratus OCT (0.98). Lower TMD values were associated with smaller RNFL thickness in most parameters from both equipments. Conclusion Adding VCC resulted in improved performance in SLP when evaluating eyes with BA, and both technologies are sensitive in detecting average, superior, inferior, and nasal quadrant RNFL loss. However, GDx VCC still poorly discriminates RNFL loss in the temporal quadrant when compared with Stratus OCT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. To evaluate the effect of disease severity and optic disc size on the diagnostic accuracies of optic nerve head (ONH), retinal nerve fiber layer (RNFL), and macular parameters with RTVue (Optovue, Fremont, CA) spectral domain optical coherence tomography (SDOCT) in glaucoma. METHODS. 110 eyes of 62 normal subjects and 193 eyes of 136 glaucoma patients from the Diagnostic Innovations in Glaucoma Study underwent ONH, RNFL, and macular imaging with RTVue. Severity of glaucoma was based on visual field index (VFI) values from standard automated perimetry. Optic disc size was based on disc area measurement using the Heidelberg Retina Tomograph II (Heidelberg Engineering, Dossenheim, Germany). Influence of disease severity and disc size on the diagnostic accuracy of RTVue was evaluated by receiver operating characteristic (ROC) and logistic regression models. RESULTS. Areas under ROC curve (AUC) of all scanning areas increased (P < 0.05) as disease severity increased. For a VFI value of 99%, indicating early damage, AUCs for rim area, average RNLI thickness, and ganglion cell complex-root mean square were 0.693, 0.799, and 0.779, respectively. For a VFI of 70%, indicating severe damage, corresponding AUCs were 0.828, 0.985, and 0.992, respectively. Optic disc size did not influence the AUCs of any of the SDOCT scanning protocols of RTVue (P > 0.05). Sensitivity of the rim area increased and specificity decreased in large optic discs. CONCLUSIONS. Diagnostic accuracies of RTVue scanning protocols for glaucoma were significantly influenced by disease severity. Sensitivity of the rim area increased in large optic discs at the expense of specificity. (Invest Ophthalmol Vis Sci. 2011;92:1290-1296) DOI:10.1167/iovs.10-5516

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. To evaluate and compare rates of change in neuro-retinal rim area (RA) and retinal nerve fiber layer thickness (RNFLT) measurements in glaucoma patients, those with suspected glaucoma, and normal subjects observed over time. METHODS. In this observational cohort study, patients recruited from two longitudinal studies (Diagnostic Innovations in Glaucoma Study-DIGS and African Descent and Evaluation Study-ADAGES) were observed with standard achromatic perimetry (SAP), optic disc stereophotographs, confocal scanning laser ophthalmoscopy (HRT-3; Heidelberg Engineering, Heidelberg, Germany), and scanning laser polarimetry (GDx-VCC; Carl Zeiss Meditec, Inc., Dublin, CA). Glaucoma progression was determined by the Guided Progression Analysis software for standard automated perimetry [SAP] and by masked assessment of serial optic disc stereophotographs by expert graders. Random-coefficients models were used to evaluate rates of change in average RNFLT and global RA measurements and their relationship with glaucoma progression. RESULTS. At baseline, 194 (31%) eyes were glaucomatous, 347 (55%) had suspected glaucoma, and 88 (14%) were normal. Forty-six (9%) eyes showed progression by SAP and/or stereophotographs, during an average follow-up of 3.3 (+/-0.7) years. The average rate of decline for RNFLT measurements was significantly higher in the progressing group than in the non-progressing group (-0.65 vs. -0.11 mu m/y, respectively; P < 0.001), whereas RA decline was not significantly different between these groups (-0.0058 vs. -0.0073 mm(2)/y, respectively; P = 0.727). The areas under the receiver operating characteristic (ROC) curves used to discriminate progressing versus nonprogressing eyes were 0.811 and 0.507 for the rates of change in the RNFLT and RA, respectively (P < 0.001). CONCLUSIONS. The ability to discriminate eyes with progressing glaucoma by SAP and/or stereophotographs from stable eyes was significantly greater for RNFLT than for RA measurements. (Invest Ophthalmol Vis Sci. 2010;51:3531-3539) DOI: 10.1167/iovs.09-4350

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the ability of the GDx Variable Corneal Compensation (VCC) Guided Progression Analysis (GPA) software for detecting glaucomatous progression. Design: Observational cohort study. Participants: The study included 453 eyes from 252 individuals followed for an average of 46 +/- 14 months as part of the Diagnostic Innovations in Glaucoma Study. At baseline, 29% of the eyes were classified as glaucomatous, 67% of the eyes were classified as suspects, and 5% of the eyes were classified as healthy. Methods: Images were obtained annually with the GDx VCC and analyzed for progression using the Fast Mode of the GDx GPA software. Progression using conventional methods was determined by the GPA software for standard automated achromatic perimetry (SAP) and by masked assessment of optic disc stereophotographs by expert graders. Main Outcome Measures: Sensitivity, specificity, and likelihood ratios (LRs) for detection of glaucoma progression using the GDx GPA were calculated with SAP and optic disc stereophotographs used as reference standards. Agreement among the different methods was reported using the AC(1) coefficient. Results: Thirty-four of the 431 glaucoma and glaucoma suspect eyes (8%) showed progression by SAP or optic disc stereophotographs. The GDx GPA detected 17 of these eyes for a sensitivity of 50%. Fourteen eyes showed progression only by the GDx GPA with a specificity of 96%. Positive and negative LRs were 12.5 and 0.5, respectively. None of the healthy eyes showed progression by the GDx GPA, with a specificity of 100% in this group. Inter-method agreement (AC1 coefficient and 95% confidence intervals) for non-progressing and progressing eyes was 0.96 (0.94-0.97) and 0.44 (0.28-0.61), respectively. Conclusions: The GDx GPA detected glaucoma progression in a significant number of cases showing progression by conventional methods, with high specificity and high positive LRs. Estimates of the accuracy for detecting progression suggest that the GDx GPA could be used to complement clinical evaluation in the detection of longitudinal change in glaucoma. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2010; 117: 462-470 (C) 2010 by the American Academy of Ophthalmology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To compare the abilities of scanning laser polarimetry (SLP) with enhanced corneal compensation (ECC) and variable corneal compensation (VCC) modes for detection of retinal nerve fiber layer (RNFL) loss in eyes with band atrophy (BA) of the optic nerve. DESIGN. Cross-sectional study. METHODS: Thirty-seven eyes from 37 patients with BA and temporal visual field defect from chiasmal compression and 40 eyes from 40 healthy subjects were studied. Subjects underwent standard automated perimetry and RNFL measurements using an SLP device equipped with VCC and ECC. Receiver operating characteristic (ROC) curves were calculated for each parameter. Pearson correlation coefficients were obtained to evaluate the relationship between RNFL thickness parameters and severity of visual field loss, as assessed by the temporal mean defect. RESULTS: All RNFL thickness parameters were significantly lower in eyes with BA compared with normal eyes with both compensation modes. However, no statistically significant differences were observed in the areas under the ROC curves for the different parameters between GDx VCC and ECC (Carl Zeiss Meditec, Inc, Dublin, California, USA). Structure-function relationships also were similar for both compensation modes. CONCLUSIONS: No significant differences were found between the diagnostic accuracy of GDx ECC and that of VCC for detection of BA of the optic nerve. The use of GDx ECC does not seem to provide a better evaluation of RNFL loss on the temporal and nasal sectors of the peripapillary retina in subjects with BA of the optic nerve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of the cement type and the water storage time on the push-out bond strength of a glass fiber post. Glass fiber posts (Fibrekor, Jeneric Pentron) were luted to post spaces using a self-cured resin cement (C&B Cement [CB]), a glass ionomer cement (Ketac Cem [KC]) or a resin-modified glass ionomer cement (GC FujiCEM [FC]) according to the manufacturers’ instructions. For each luting agent, the specimens were exposed to one of the following water storage times (n=5): 1 day (T1), 7 days (T7), 90 days (T90) and 180 days (T180). Push-out tests were performed after the storage times. Control specimens were not exposed to water storage, but subjected to the push-out test 10 min after post cementation. Data (in MPa) were analyzed by Kruskal-Wallis and Dunn`s test (α=0.05). Cement type and water storage time had a significant effect (p<0.05) on the push-out bond strength. CB showed significantly higher values of retention (p<0.05) than KC and FC, irrespective of the water storage time. Water storage increased significantly the push-out bond strength in T7 and T90, regardless of the cement type (p<0.05). The results showed that fiber posts luted to post spaces with the self-cured resin cement exhibited the best bonding performance throughout the 180-day water storage period. All cements exhibited a tendency to increase the bond strength after 7 and 90 days of water storage, decreasing thereafter.