33 resultados para Digital processing image
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper aims to study evolution of increase, distribution and classification of pits in 310S austenitic stainless steels obtained in the state as-received and heat-treated under different exposure times in saline. This work applicability has been based on a technique development for morphologic characterization of localized corrosion associated with description aspects of shapes, size and population-specific parameters. Methodology has been consisted in the following steps: specimens preparation, corrosion tests via salt spray in different conditions, microstructural analysis, pits profiles analysis and images analysis, digital processing and image analysis in order to characterize the pits distribution, morphology and size. Results obtained in digital processing and profiles image analysis have been subjected to statistical analysis using median as parameter in the alloy as received and treated. The alloy as received displays the following morphology: hemispheric pits> transition region A> transition region B> irregular> conic. The pits amount in the treated alloy at each exposure time is: transition region B> hemispherical> transition region A> conic> irregular.
Resumo:
In this paper, we propose a method based on association rule-mining to enhance the diagnosis of medical images (mammograms). It combines low-level features automatically extracted from images and high-level knowledge from specialists to search for patterns. Our method analyzes medical images and automatically generates suggestions of diagnoses employing mining of association rules. The suggestions of diagnosis are used to accelerate the image analysis performed by specialists as well as to provide them an alternative to work on. The proposed method uses two new algorithms, PreSAGe and HiCARe. The PreSAGe algorithm combines, in a single step, feature selection and discretization, and reduces the mining complexity. Experiments performed on PreSAGe show that this algorithm is highly suitable to perform feature selection and discretization in medical images. HiCARe is a new associative classifier. The HiCARe algorithm has an important property that makes it unique: it assigns multiple keywords per image to suggest a diagnosis with high values of accuracy. Our method was applied to real datasets, and the results show high sensitivity (up to 95%) and accuracy (up to 92%), allowing us to claim that the use of association rules is a powerful means to assist in the diagnosing task.
Resumo:
The effect of varying the geometric parameters of helical strakes on vortex-induced vibration (VIV) is investigated in this paper. The degree of oscillation attenuation or even suppression is analysed for isolated circular cylinder cases. How a cylinder fitted with strakes behaves when immersed in the wake of another cylinder in tandem arrangement is also investigated and these results are compared to those with a single straked cylinder. The experimental tests are conducted at a circulating water channel facility and the cylindrical models are mounted on a low-damping air bearing elastic base with one degree-of-freedom, restricted to oscillate in the transverse direction to the channel flow. Three strake pitches (p) and heights (h) are tested: p = 5, 10, 15d, and h = 0.1, 0.2, 0.25d. The mass ratio is 1.8 for all models. The Reynolds number range is from 1000 to 10000, and the reduced velocity varies up to 21. The cases with h = 0.1d strakes reduce the amplitude response when compared to the isolated plain cylinder, however the oscillation still persists. On the other hand, the cases with h = 0.2, 0.25d strakes almost completely suppress VIV. Spanwise vorticity fields, obtained through stereoscopic digital particle image velocimetry (SDPIV), show an alternating vortex wake for the p = 10d and h = 0.1d straked cylinder. The p = 10d and h = 0.2d cylinder wake has separated shear layers with constant width and no roll-up close to the body. The strakes do not increase the magnitude of the out-of-plane velocity compared to the isolated plain cylinder. However, they deflect the flow in the out-of-plane direction in a controlled way, which can prevent the vortex shedding correlation along the span. In order to investigate the wake interference effect on the strake efficiency, an experimental arrangement with two cylinders in tandem is employed. The centre-to-centre distance for the tandem arrangement varies from 2 to 6. When the downstream p = 10d and h = 0.2d cylinder is immersed in the wake of an upstream fixed plain cylinder, it loses its effectiveness compared with the isolated case. Although the oscillations have significant amplitude, they are limited, which is a different behaviour from that of a tandem configuration with two plain cylinders. For this particular case, the amplitude response monotonically increases for all gaps, except one, a trait usually found in galloping-like oscillations. SDPIV results for the tandem arrangements show alternating vortex shedding and oscillatory wake. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.
Resumo:
We evaluated the performance of a novel procedure for segmenting mammograms and detecting clustered microcalcifications in two types of image sets obtained from digitization of mammograms using either a laser scanner, or a conventional ""optical"" scanner. Specific regions forming the digital mammograms were identified and selected, in which clustered microcalcifications appeared or not. A remarkable increase in image intensity was noticed in the images from the optical scanner compared with the original mammograms. A procedure based on a polynomial correction was developed to compensate the changes in the characteristic curves from the scanners, relative to the curves from the films. The processing scheme was applied to both sets, before and after the polynomial correction. The results indicated clearly the influence of the mammogram digitization on the performance of processing schemes intended to detect microcalcifications. The image processing techniques applied to mammograms digitized by both scanners, without the polynomial intensity correction, resulted in a better sensibility in detecting microcalcifications in the images from the laser scanner. However, when the polynomial correction was applied to the images from the optical scanner, no differences in performance were observed for both types of images. (C) 2008 SPIE and IS&T [DOI: 10.1117/1.3013544]
Resumo:
Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.
Resumo:
A way of coupling digital image correlation (to measure displacement fields) and boundary element method (to compute displacements and tractions along a crack surface) is presented herein. It allows for the identification of Young`s modulus and fracture parameters associated with a cohesive model. This procedure is illustrated to analyze the latter for an ordinary concrete in a three-point bend test on a notched beam. In view of measurement uncertainties, the results are deemed trustworthy thanks to the fact that numerous measurement points are accessible and used as entries to the identification procedure. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, processing methods of Fourier optics implemented in a digital holographic microscopy system are presented. The proposed methodology is based on the possibility of the digital holography in carrying out the whole reconstruction of the recorded wave front and consequently, the determination of the phase and intensity distribution in any arbitrary plane located between the object and the recording plane. In this way, in digital holographic microscopy the field produced by the objective lens can be reconstructed along its propagation, allowing the reconstruction of the back focal plane of the lens, so that the complex amplitudes of the Fraunhofer diffraction, or equivalently the Fourier transform, of the light distribution across the object can be known. The manipulation of Fourier transform plane makes possible the design of digital methods of optical processing and image analysis. The proposed method has a great practical utility and represents a powerful tool in image analysis and data processing. The theoretical aspects of the method are presented, and its validity has been demonstrated using computer generated holograms and images simulations of microscopic objects. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a novel algorithm to successfully achieve viable integrity and authenticity addition and verification of n-frame DICOM medical images using cryptographic mechanisms. The aim of this work is the enhancement of DICOM security measures, especially for multiframe images. Current approaches have limitations that should be properly addressed for improved security. The algorithm proposed in this work uses data encryption to provide integrity and authenticity, along with digital signature. Relevant header data and digital signature are used as inputs to cipher the image. Therefore, one can only retrieve the original data if and only if the images and the inputs are correct. The encryption process itself is a cascading scheme, where a frame is ciphered with data related to the previous frames, generating also additional data on image integrity and authenticity. Decryption is similar to encryption, featuring also the standard security verification of the image. The implementation was done in JAVA, and a performance evaluation was carried out comparing the speed of the algorithm with other existing approaches. The evaluation showed a good performance of the algorithm, which is an encouraging result to use it in a real environment.
Resumo:
The present work reports the porous alumina structures fabrication and their quantitative structural characteristics study based on mathematical morphology analysis by using the SEM images. The algorithm used in this work was implemented in 6.2 MATLAB software. Using the algorithm it was possible to obtain the distribution of maximum, minimum and average radius of the pores in porous alumina structures. Additionally, with the calculus of the area occupied by the pores, it was possible to obtain the porosity of the structures. The quantitative results could be obtained and related to the process fabrication characteristics, showing to be reliable and promising to be used to control the pores formation process. Then, this technique could provide a more accurate determination of pore sizes and pores distribution. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Techniques applying digital images increasingly have been used in biology, medicine, physics, and other research areas. The image coordinates can represent light intensities values to be detected by a CCD. Based on this concept, a photometric system composed of a LED source and a digital camera as a detector was used for optical density measurements. Standards for permanganate, glucose, and protein solutions were detemined by colorimetric methods using our device. Samples of protein of Pasteurella mutocida bacteria membrane and, also, fractions of rabbit kidney membrane, rich in Na, K-ATPase, with unknown concentrations were dosed through the Hartree method using our photometric system.
Resumo:
Functional brain imaging techniques such as functional MRI (fMRI) that allow the in vivo investigation of the human brain have been exponentially employed to address the neurophysiological substrates of emotional processing. Despite the growing number of fMRI studies in the field, when taken separately these individual imaging studies demonstrate contrasting findings and variable pictures, and are unable to definitively characterize the neural networks underlying each specific emotional condition. Different imaging packages, as well as the statistical approaches for image processing and analysis, probably have a detrimental role by increasing the heterogeneity of findings. In particular, it is unclear to what extent the observed neurofunctional response of the brain cortex during emotional processing depends on the fMRI package used in the analysis. In this pilot study, we performed a double analysis of an fMRI dataset using emotional faces. The Statistical Parametric Mapping (SPM) version 2.6 (Wellcome Department of Cognitive Neurology, London, UK) and the XBAM 3.4 (Brain Imaging Analysis Unit, Institute of Psychiatry, Kings College London, UK) programs, which use parametric and non-parametric analysis, respectively, were used to assess our results. Both packages revealed that processing of emotional faces was associated with an increased activation in the brain`s visual areas (occipital, fusiform and lingual gyri), in the cerebellum, in the parietal cortex, in the cingulate cortex (anterior and posterior cingulate), and in the dorsolateral and ventrolateral prefrontal cortex. However, blood oxygenation level-dependent (BOLD) response in the temporal regions, insula and putamen was evident in the XBAM analysis but not in the SPM analysis. Overall, SPM and XBAM analyses revealed comparable whole-group brain responses. Further Studies are needed to explore the between-group compatibility of the different imaging packages in other cognitive and emotional processing domains. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To evaluate the influence of JPEG quality factors 100, 80 and 60 on the reproducibility of identification of cephalometric points on images of lateral cephalograms, compared with the Digital Imaging and Communications in Medicine (DICOM) format. Methods: The sample was composed of 30 images of digital lateral cephalograms obtained from 30 individuals (15 males and 15 females) on a phosphor plate system in DICOM format. The images were converted to JPEG with quality factors 100, 80 and 60 with the aid of software, adding up to 90 images. The 120 images (DICOM, JPEG 100, 80 and 60) were blinded and 12 cephalometric points were identified on each image by three calibrated orthodontists, using the x-y coordinate system, on a cephalometric software. Results: The results revealed that identification of cephalometric points was highly reproducible, except for the point Orbitale (Or) on the x-axis. The different file formats did not present a statistically significant difference. Conclusions: JPEG images of lateral cephalograms with quality factors 100, 80 and 60 did not present alterations in the reproducibility of identification of cephalometric points compared with the DICOM format. Good reproducibility was achieved for the 12 points, except for point Or on the x-axis. Dentomaxillofacial Radiology (2009) 38, 393-400. doi: 10.1259/dmfr/40996636
Resumo:
This study compared splinted and non-splinted implant-supported prosthesis with and without a distal proximal contact using a digital image correlation method. An epoxy resin model was made with acrylic resin replicas of a mandibular first premolar and second molar and with threaded implants replacing the second premolar and first molar. Splinted and non-splinted metal-ceramic screw-retained crowns were fabricated and loaded with and without the presence of the second molar. A single-camera measuring system was used to record the in-plane deformation on the model surface at a frequency of 1.0 Hz under a load from 0 to 250 N. The images were then analyzed with specialist software to determine the direct (horizontal) and shear strains along the model. Not splinting the crowns resulted in higher stress transfer to the supporting implants when the second molar replica was absent. The presence of a second molar and an effective interproximal contact contributed to lower stress transfer to the supporting structures even for non-splinted restorations. Shear strains were higher in the region between the molars when the second molar was absent, regardless of splinting. The opposite was found for the region between the implants, which had higher shear strain values when the second molar was present. When an effective distal contact is absent, non-splinted implant-supported restorations introduce higher direct strains to the supporting structures under loading. Shear strains appear to be dependent also on the region within the model, with different regions showing different trends in strain changes in the absence of an effective distal contact. (C) 2011 Elsevier Ltd. All rights reserved.