3 resultados para Deterministic packet marking
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper, we present a study on a deterministic partially self-avoiding walk (tourist walk), which provides a novel method for texture feature extraction. The method is able to explore an image on all scales simultaneously. Experiments were conducted using different dynamics concerning the tourist walk. A new strategy, based on histograms. to extract information from its joint probability distribution is presented. The promising results are discussed and compared to the best-known methods for texture description reported in the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Texture is one of the most important visual attributes for image analysis. It has been widely used in image analysis and pattern recognition. A partially self-avoiding deterministic walk has recently been proposed as an approach for texture analysis with promising results. This approach uses walkers (called tourists) to exploit the gray scale image contexts in several levels. Here, we present an approach to generate graphs out of the trajectories produced by the tourist walks. The generated graphs embody important characteristics related to tourist transitivity in the image. Computed from these graphs, the statistical position (degree mean) and dispersion (entropy of two vertices with the same degree) measures are used as texture descriptors. A comparison with traditional texture analysis methods is performed to illustrate the high performance of this novel approach. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We introduce jump processes in R(k), called density-profile processes, to model biological signaling networks. Our modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. We are mostly interested on the multi-dimensional empirical-magnetization vector in the thermodynamic limit, and prove that, within arbitrary finite time-intervals, its path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation with explicit bounds on the distance between the stochastic and deterministic trajectories. As parameters of the spin-flip dynamics change, the associated dynamical system may go through bifurcations, associated to phase transitions in the statistical mechanical setting. We present a simple example of spin-flip stochastic model, associated to a synthetic biology model known as repressilator, which leads to a dynamical system with Hopf and pitchfork bifurcations. Depending on the parameter values, the magnetization random path can either converge to a unique stable fixed point, converge to one of a pair of stable fixed points, or asymptotically evolve close to a deterministic orbit in Rk. We also discuss a simple signaling pathway related to cancer research, called p53 module.