235 resultados para Detection sensitivity
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Secondary caries has been reported as the main reason for restoration replacement. The aim of this in vitro study was to evaluate the performance of different methods - visual inspection, laser fluorescence (DIAGNOdent), radiography and tactile examination - for secondary caries detection in primary molars restored with amalgam. Fifty-four primary molars were photographed and 73 suspect sites adjacent to amalgam restorations were selected. Two examiners evaluated independently these sites using all methods. Agreement between examiners was assessed by the Kappa test. To validate the methods, a caries-detector dye was used after restoration removal. The best cut-off points for the sample were found by a Receiver Operator Characteristic (ROC) analysis, and the area under the ROC curve (Az), and the sensitivity, specificity and accuracy of the methods were calculated for enamel (D2) and dentine (D3) thresholds. These parameters were found for each method and then compared by the McNemar test. The tactile examination and visual inspection presented the highest inter-examiner agreement for the D2 and D3 thresholds, respectively. The visual inspection also showed better performance than the other methods for both thresholds (Az = 0.861 and Az = 0.841, respectively). In conclusion, the visual inspection presented the best performance for detecting enamel and dentin secondary caries in primary teeth restored with amalgam.
Resumo:
Wolbachia are endosymbiont bacteria of the family Rickettsiacea that are widespread in invertebrates and occur between 20% and 60% of Neotropical insects. These bacteria are responsible for reproductive phenomena such as cytoplasmic incompatibility, male killing, feminization and parthenogenesis. Supergroups A and B of Wolbachia are common in insects and can be identified using primers for 16S rDNA, ftsZ and wsp; these primers vary in their ability to detect Wolbachia. The ftsZ primer was the first primer used to detect Wolbachia in Anastrepha fruit flies. The primers for 16S rDNA, ftsZ and wsp and the corresponding PCR conditions have been optimized to study the distribution of Wolbachia and their effect on the biology of Anastrepha in Brazil. In this work, we examined the ability of these primers to detect Wolbachia in Anastrepha populations from three regions in the State of São Paulo, southeastern Brazil. All of the samples were positive for Wolbachia supergroup A when screened with primers for 16S A rDNA and wsp A; the wsp B primer also gave a positive result, indicating cross-reactivity. The ftsZ primer showed a poor ability to detect Wolbachia in Anastrepha and generated false negatives in 44.9% of the samples. These findings indicate that reliable PCR detection of Wolbachia requires the use of primers for 16S rDNA and wsp to avoid cross-reactions and false negatives, and that the ftsZ primer needs to be redesigned to improve its selectivity.
Resumo:
The aim of this study was to optimize a PCR assay that amplifies an 843 pb fragment from the p28 gene of Ehrlichia canis and compare it with two other PCR methods used to amplify portions of the 16S rRNA and dsb genes of Ehrlichia. Blood samples were collected from dogs suspected of having a positive diagnosis for canine ehrlichiosis. Amplification of the p28 gene by PCR produced an 843-bp fragment and this assay could detect DNA from one gene copy among 1 billion cells. All positive samples detected by the p28-based PCR were also positive by the 16S rRNA nested-PCR and also by the dsb-based PCR. Among the p28-based PCR negative samples, 55.3% were co-negatives, but 27.6% were positive in 16S rRNA and dsb based PCR assays. The p28-based PCR seems to be a useful test for the molecular detection of E. canis, however improvements in this PCR sensitivity are desired, so that it can become an important alternative in the diagnosis of canine ehrlichiosis.
Resumo:
Bovine coronavirus (BCoV) is a member of the group 2 of the Coronavirus (Nidovirales: Coronaviridae) and the causative agent of enteritis in both calves and adult bovine, as well as respiratory disease in calves. The present study aimed to develop a semi-nested RT-PCR for the detection of BCoV based on representative up-to-date sequences of the nucleocapsid gene, a conserved region of coronavirus genome. Three primers were designed, the first round with a 463bp and the second (semi-nested) with a 306bp predicted fragment. The analytical sensitivity was determined by 10-fold serial dilutions of the BCoV Kakegawa strain (HA titre: 256) in DEPC treated ultra-pure water, in fetal bovine serum (FBS) and in a BCoV-free fecal suspension, when positive results were found up to the 10-2, 10-3 and 10-7 dilutions, respectively, which suggests that the total amount of RNA in the sample influence the precipitation of pellets by the method of extraction used. When fecal samples was used, a large quantity of total RNA serves as carrier of BCoV RNA, demonstrating a high analytical sensitivity and lack of possible substances inhibiting the PCR. The final semi-nested RT-PCR protocol was applied to 25 fecal samples from adult cows, previously tested by a nested RT-PCR RdRp used as a reference test, resulting in 20 and 17 positives for the first and second tests, respectively, and a substantial agreement was found by kappa statistics (0.694). The high sensitivity and specificity of the new proposed method and the fact that primers were designed based on current BCoV sequences give basis to a more accurate diagnosis of BCoV-caused diseases, as well as to further insights on protocols for the detection of other Coronavirus representatives of both Animal and Public Health importance.
Resumo:
Three comparative assays were performed seeking to improve the sensitivity of the diagnosis of Bordetella bronchiseptica infection analyzing swine nasal swabs. An initial assay compared the recovery of B. bronchiseptica from swabs simultaneously inoculated with B. bronchiseptica and some interfering bacteria, immersed into three transport formulations (Amies with charcoal, trypticase soy broth and phosphate buffer according to Soerensen supplemented with 5% of bovine fetal serum) and submitted to different temperatures (10ºC and 27ºC) and periods of incubation (24, 72 and 120 hours). A subsequent assay compared three selective media (MacConkey agar, modified selective medium G20G and a ceftiofur medium) for their recovery capabilities from clinical specimens. One last assay compared the polymerase chain reaction to the three selective media. In the first assay, the recovery of B. bronchiseptica from transport systems was better at 27ºC and the three formulations had good performances at this temperature, but the collection of qualitative and quantitative analysis indicated the advantage of Amies medium for nasal swabs transportation. The second assay indicated that MacConkey agar and modified G20G had similar results and were superior to the ceftiofur medium. In the final assay, polymerase chain reaction presented superior capability of B. bronchiseptica detection to culture procedures.
Resumo:
The combination of metallic phthalocyanines (MPcs) and biomolecules has been explored in the literature either as mimetic systems to investigate molecular interactions or as supporting layers to immobilize biomolecules. Here, Langmuir-Blodgett (LB) films containing the phospholipid dimyristoyl phosphatidic acid (DMPA) mixed either with iron phthalocyanine (FePc) or with lutetium bisphthalocyanine (LuPc(2)) were applied as ITO modified-electrodes in the detection of catechol using cyclic voltammetry. The mixed Langmuir films of FePc + DMPA and LuPc(2) + DMPA displayed surface-pressure isotherms with no evidence of molecular-level interactions. The Fourier Transform Infrared (FTIR) spectra of the multilayer LB films confirmed the lack of interaction between the components. The DMPA and the FePc molecules were found to be oriented perpendicularly to the substrate, while LuPc(2) molecules were randomly organized. The phospholipid matrix induced a remarkable electrocatalytic effect on the phthalocyanines; as a result the mixed LB films deposited on ITO could be used to detect catechol with detection limits of 4.30 x 10(-7) and 3.34 x 10(-7) M for FePc + DMPA and LuPc(2) + DMPA, respectively. Results from kinetics experiments revealed that ion diffusion dominated the response of the modified electrodes. The sensitivity was comparable to that of other non-enzymatic sensors, which is sufficient to detect catechol in the food industry. The higher stability of the electrochemical response of the LB films and the ability to control the molecular architecture are promising for further studies with incorporation of biomolecules.
Resumo:
The efficacy of fluorescence spectroscopy to detect squamous cell carcinoma is evaluated in an animal model following laser excitation at 442 and 532 nm. Lesions are chemically induced with a topical DMBA application at the left lateral tongue of Golden Syrian hamsters. The animals are investigated every 2 weeks after the 4th week of induction until a total of 26 weeks. The right lateral tongue of each animal is considered as a control site (normal contralateral tissue) and the induced lesions are analyzed as a set of points covering the entire clinically detectable area. Based on fluorescence spectral differences, four indices are determined to discriminate normal and carcinoma tissues, based on intraspectral analysis. The spectral data are also analyzed using a multivariate data analysis and the results are compared with histology as the diagnostic gold standard. The best result achieved is for blue excitation using the KNN (K-nearest neighbor, a interspectral analysis) algorithm with a sensitivity of 95.7% and a specificity of 91.6%. These high indices indicate that fluorescence spectroscopy may constitute a fast noninvasive auxiliary tool for diagnostic of cancer within the oral cavity. (C) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A new approach for the integration of dual contactless conductivity and amperometric detection with an electrophoresis microchip system is presented. The PDMS layer with the embedded channels was reversibly sealed to a thin glass substrate (400 mu m), on top of which a palladium electrode had been previously fabricated enabling end-channel amperometric detection. The thin glass substrate served also as a physical wall between the separation channel and the sensing copper electrodes for contactless conductivity detection. The latter were not integrated in the microfluidic device, but fabricated on an independent plastic substrate allowing a simpler and more cost-effective fabrication of the chip. PDMS/glass chips with merely contactless conductivity detection were first characterized in terms of sensitivity, efficiency and reproducibility. The separation efficiency of this system was found to be similar or slightly superior to other systems reported in the literature. The simultaneous determination of ionic and electroactive species was illustrated by the separation of peroxynitrite degradation products, i.e. NO(3)(-) (non-electroactive) and NO(2)(-) (electroactive), using hybrid PDMS/glass chips with dual contactless conductivity and amperometric detection. While both ions were detected by contactless conductivity detection with good efficiency, NO(2)(-) was also simultaneously detected amperometrically with a significant enhancement in sensitivity compared to contactless conductivity detection.
Resumo:
This study outlines the quantification of low levels of Alicyclobacillus acidoterrestris in pure cultures, since this bacterium is not inactivated by pasteurization and may remain in industrialized foods and beverages. Electroconductive polymer-modified fluorine tin oxide (FTO) electrodes and multiple nanoparticle labels were used for biosensing. The detection of A. acidoterrestris in pure cultures was performed by reverse transcription polymerase chain reaction (RT-PCR) and the sensitivity was further increased by asymmetric nested RT-PCR using electrochemical detection for quantification of the amplicon. The quantification of nested RT-PCR products by Ag/Au-based electrochemical detection was able to detect 2 colony forming units per mL (CFU mL(-1)) of spores in pure culture and low detection and quantification limits (7.07 and 23.6 nM, respectively) were obtained for the target A. acidoterrestris on the electrochemical detection bioassay.
Resumo:
A green and highly sensitive analytical procedure was developed for the determination of free chlorine in natural waters, based on the reaction with N,N-diethyl-p-phenylenediamine (DPD). The flow system was designed with solenoid micro-pumps in order to improve mixing conditions by pulsed flows and to minimize reagent consumption as well as waste generation. A 100-cm optical path flow cell based on a liquid core waveguide was employed to increase sensitivity. A linear response was observed within the range 10.0 to 100.0 mu g L(-1), with the detection limit, coefficient of variation and sampling rate estimated as 6.8 mu g (99.7% confidence level), 0.9% (n = 20) and 60 determinations per hour, respectively. The consumption of the most toxic reagent (DPD) was reduced 20,000-fold and 30-fold in comparison to the batch method and flow injection with continuous reagent addition, respectively. The results for natural and tap water samples agreed with those obtained by the reference batch spectrophotometric procedure at the 95% confidence level. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The present work reports the thermal annealing process, the number of layer and electrochemical process effect in the optical response quality of Bragg and microcavity devices that were applied as organic solvent sensors. These devices have been obtained by using porous silicon (PS) technology. The optical characterization of the Bragg reflector, before annealing, showed a broad photonic band-gap structure with blue shifted and narrowed after annealing process. The electrochemical process used to obtain the PS-based device imposes the limit in the number of layers because of the chemical dissolution effect. The interface roughness minimizations in the devices have been achieved by using the double electrochemical cell setup. The microcavity devices showed to have a good sensibility for organic solvent detection. The thermal annealed device showed better sensibility feature and this result was attributed to passivation of the surface devices. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The resazurin microtitre plate assay (REMA) was evaluated to determine the susceptibility of Mycobacterium tuberculosis to pyrazinamide, and was compared with the broth microdilution method (BMM), the absolute concentration method (ACM) and pyrazinamidase (PZase) determination. Methods: Thirty-four M. tuberculosis clinical isolates (26 susceptible and 8 resistant to pyrazinamide) and reference strains M. tuberculosis H37Rv ATCC 27294 and Mycobacterium bovis AN5 were tested. Results: REMA and BMM showed 100% specificity and sensitivity when compared with ACM; BMM, however, demanded more reading time. The PZase determination assay showed 87.50% and 100% sensitivity and specificity, respectively. Conclusions: All tested methods in this preliminary study showed excellent sensitivity and specificity for the determination of pyrazinamide susceptibility of M. tuberculosis, but REMA was faster, low-cost and easy to perform and interpret. Additional studies evaluating REMA for differentiating pyrazinamide-resistant and-susceptible M. tuberculosis should be conducted on an extended panel of clinical isolates.
Resumo:
P>Thirty-five lymph node samples were taken from animals with macroscopic lesions consistent with Mycobacterium bovis infection. The animals were identified by postmortem examination in an abattoir in the northwestern region of state of Parana, Brazil. Twenty-two of the animals had previously been found to be tuberculin skin test positive. Tissue samples were decontaminated by Petroff`s method and processed for acid-fast bacilli staining, culture in Stonebrink and Lowenstein-Jensen media and DNA extraction. Lymph node DNA samples were amplified by PCR in the absence and presence (inhibitor controls) of DNA extracted from M. bovis culture. Mycobacterium bovis was identified in 14 (42.4%) lymph node samples by both PCR and by culture. The frequency of PCR-positive results (54.5%) was similar to that of culture-positive results (51.5%, P > 0.05). The percentage of PCR-positive lymph nodes increased from 39.4% (13/33) to 54.5% (18/33) when samples that were initially PCR-negative were reanalysed using 2.5 mu l DNA (two samples) and 1 : 2 diluted DNA (three samples). PCR sensitivity was affected by inhibitors and by the amount of DNA in the clinical samples. Our results indicate that direct detection of M. bovis in lymph nodes by PCR may be a fast and useful tool for bovine tuberculosis epidemic management in the region.
Resumo:
A simple, rapid, selective and sensitive analytical method by HPLC with UV detection was developed for the quantification of carbamazepine, phenobarbital and phenytoin in only 0.2 mL of plasma. A C18 column (150 x 3.9 mm, 4 micra) using a binary mobile phase consisting of water and acetonitrile (70:30, v/v) at a flow rate of 0.5 mL/min were proposed. Validation of the analytical method showed a good linearity (0.3 to 20.0 mg/L for CBZ, 0.9 to 60.0 mg/L for PB and 0.6 to 40.0 mg/L for PHT), high sensitivity (LOQ: 0.3, 0.9 and 0.6 mg/L respectively). The method was applied for drug monitoring of antiepileptic drugs (AED) in 27 patients with epilepsy under polytherapy.
Resumo:
OBJECTIVE. The purposes of this study were to use the myocardial delayed enhancement technique of cardiac MRI to investigate the frequency of unrecognized myocardial infarction (MI) in patients with end-stage renal disease, to compare the findings with those of ECG and SPECT, and to examine factors that may influence the utility of these methods in the detection of MI. SUBJECTS AND METHODS. We prospectively performed cardiac MRI, ECG, and SPECT to detect unrecognized MI in 72 patients with end-stage renal disease at high risk of coronary artery disease but without a clinical history of MI. RESULTS. Fifty-six patients (78%) were men ( mean age, 56.2 +/- 9.4 years) and 16 (22%) were women ( mean age, 55.8 +/- 11.4). The mean left ventricular mass index was 103.4 +/- 27.3 g/m(2), and the mean ejection fraction was 60.6% +/- 15.5%. Myocardial delayed enhancement imaging depicted unrecognized MI in 18 patients (25%). ECG findings were abnormal in five patients (7%), and SPECT findings were abnormal in 19 patients (26%). ECG findings were false-negative in 14 cases and false-positive in one case. The accuracy, sensitivity, and specificity of ECG were 79.2%, 22.2%, and 98.1% (p = 0.002). SPECT findings were false-negative in six cases and false-positive in seven cases. The accuracy, sensitivity, and specificity of SPECT were 81.9%, 66.7%, and 87.0% ( not significant). During a period of 4.9-77.9 months, 19 cardiac deaths were documented, but no statistical significance was found in survival analysis. CONCLUSION. Cardiac MRI with myocardial delayed enhancement can depict unrecognized MI in patients with end-stage renal disease. ECG and SPECT had low sensitivity in detection of MI. Infarct size and left ventricular mass can influence the utility of these methods in the detection of MI.