9 resultados para Design Technology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Electrodeposition of thin copper layer was carried out on titanium wires in acidic sulphate bath. The influence of titanium surface preparation, cathodic current density, copper sulphate and sulphuric acid concentrations, electrical charge density and stirring of the solution on the adhesion of the electrodeposits was studied using the Taguchi statistical method. A L(16) orthogonal array with the six factors of control at two levels each and three interactions was employed. The analysis of variance of the mean adhesion response and signal-to-noise ratio showed the great influence of cathodic current density on adhesion. on the contrary, the other factors as well as the three investigated interactions revealed low or no significant effect. From this study optimized electrolysis conditions were defined. The copper electrocoating improved the electrical conductivity of the titanium wire. This shows that copper electrocoated titanium wires could be employed for both electrical purpose and mechanical reinforcement in superconducting magnets. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The design of supplementary damping controllers to mitigate the effects of electromechanical oscillations in power systems is a highly complex and time-consuming process, which requires a significant amount of knowledge from the part of the designer. In this study, the authors propose an automatic technique that takes the burden of tuning the controller parameters away from the power engineer and places it on the computer. Unlike other approaches that do the same based on robust control theories or evolutionary computing techniques, our proposed procedure uses an optimisation algorithm that works over a formulation of the classical tuning problem in terms of bilinear matrix inequalities. Using this formulation, it is possible to apply linear matrix inequality solvers to find a solution to the tuning problem via an iterative process, with the advantage that these solvers are widely available and have well-known convergence properties. The proposed algorithm is applied to tune the parameters of supplementary controllers for thyristor controlled series capacitors placed in the New England/New York benchmark test system, aiming at the improvement of the damping factor of inter-area modes, under several different operating conditions. The results of the linear analysis are validated by non-linear simulation and demonstrate the effectiveness of the proposed procedure.
Resumo:
A large percentage of pile caps support only one column, and the pile caps in turn are supported by only a few piles. These are typically short and deep members with overall span-depth ratios of less than 1.5. Codes of practice do not provide uniform treatment for the design of these types of pile caps. These members have traditionally been designed as beams spanning between piles with the depth selected to avoid shear failures and the amount of longitudinal reinforcement selected to provide sufficient flexural capacity as calculated by the engineering beam theory. More recently, the strut-and-tie method has been used for the design of pile caps (disturbed or D-region) in which the load path is envisaged to be a three-dimensional truss, with compressive forces being supported by concrete compressive struts between the column and piles and tensile forces being carried by reinforcing steel located between piles. Both of these models have not provided uniform factors of safety against failure or been able to predict whether failure will occur by flexure (ductile mode) or shear (fragile mode). In this paper, an analytical model based on the strut-and-tie approach is presented. The proposed model has been calibrated using an extensive experimental database of pile caps subjected to compression and evaluated analytically for more complex loading conditions. It has been proven to be applicable across a broad range of test data and can predict the failures modes, cracking, yielding, and failure loads of four-pile caps with reasonable accuracy.
Resumo:
This paper presents both the theoretical and the experimental approaches of the development of a mathematical model to be used in multi-variable control system designs of an active suspension for a sport utility vehicle (SUV), in this case a light pickup truck. A complete seven-degree-of-freedom model is successfully quickly identified, with very satisfactory results in simulations and in real experiments conducted with the pickup truth. The novelty of the proposed methodology is the use of commercial software in the early stages of the identification to speed up the process and to minimize the need for a large number of costly experiments. The paper also presents major contributions to the identification of uncertainties in vehicle suspension models and in the development of identification methods using the sequential quadratic programming, where an innovation regarding the calculation of the objective function is proposed and implemented. Results from simulations of and practical experiments with the real SUV are presented, analysed, and compared, showing the potential of the method.
Resumo:
This article presents a systematic and logical study of the topology optimized design, microfabrication, and static/dynamic performance characterization of an electro-thermo-mechanical microgripper. The microgripper is designed using a topology optimization algorithm based on a spatial filtering technique and considering different penalization coefficients for different material properties during the optimization cycle. The microgripper design has a symmetric monolithic 2D structure which consists of a complex combination of rigid links integrating both the actuating and gripping mechanisms. The numerical simulation is performed by studying the effects of convective heat transfer, thermal boundary conditions at the fixed anchors, and microgripper performance considering temperature-dependent and independent material properties. The microgripper is fabricated from a 25 mm thick nickel foil using laser microfabrication technology and its static/dynamic performance is experimentally evaluated. The static and dynamic electro-mechanical characteristics are analyzed as step response functions with respect to tweezing/actuating displacements, applied current/power, and actual electric resistance. A microgripper prototype having overall dimensions of 1mm (L) X 2.5mm (W) is able to deliver the maximum tweezing and actuating displacements of 25.5 mm and 33.2 mm along X and Y axes, respectively, under an applied power of 2.32 W. Experimental performance is compared with finite element modeling simulation results.
Resumo:
A green ceramic tape micro-heat exchanger was developed using Low Temperature Co-fired Ceramics technology (LTCC). The device was designed by using Computational Aided Design software and simulations were made using a Computational Fluid Dynamics package (COMSOL Multiphysics) to evaluate the homogeneity of fluid distribution in the microchannels. Four geometries were proposed and simulated in two and three dimensions to show that geometric details directly affect the distribution of velocity in the micro-heat exchanger channels. The simulation results were quite useful for the design of the microfluidic device. The micro-heat exchanger was then constructed using the LTCC technology and is composed of five thermal exchange plates in cross-flow arrangement and two connecting plates, with all plates stacked to form a device with external dimensions of 26 x 26 x 6 mm(3).
Resumo:
Distribution of timing signals is an essential factor for the development of digital systems for telecommunication networks, integrated circuits and manufacturing automation. Originally, this distribution was implemented by using the master-slave architecture with a precise master clock generator sending signals to phase-locked loops (PLL) working as slave oscillators. Nowadays, wireless networks with dynamical connectivity and the increase in size and operation frequency of the integrated circuits suggest that the distribution of clock signals could be more efficient if mutually connected architectures were used. Here, mutually connected PLL networks are studied and conditions for synchronous states existence are analytically derived, depending on individual node parameters and network connectivity, considering that the nodes are nonlinear oscillators with nonlinear coupling conditions. An expression for the network synchronisation frequency is obtained. The lock-in range and the transmission error bounds are analysed providing hints to the design of this kind of clock distribution system.
Resumo:
Cementitious stabilization of aggregates and soils is an effective technique to increase the stiffness of base and subbase layers. Furthermore, cementitious bases can improve the fatigue behavior of asphalt surface layers and subgrade rutting over the short and long term. However, it can lead to additional distresses such as shrinkage and fatigue in the stabilized layers. Extensive research has tested these materials experimentally and characterized them; however, very little of this research attempts to correlate the mechanical properties of the stabilized layers with their performance. The Mechanistic Empirical Pavement Design Guide (MEPDG) provides a promising theoretical framework for the modeling of pavements containing cementitiously stabilized materials (CSMs). However, significant improvements are needed to bring the modeling of semirigid pavements in MEPDG to the same level as that of flexible and rigid pavements. Furthermore, the MEPDG does not model CSMs in a manner similar to those for hot-mix asphalt or portland cement concrete materials. As a result, performance gains from stabilized layers are difficult to assess using the MEPDG. The current characterization of CSMs was evaluated and issues with CSM modeling and characterization in the MEPDG were discussed. Addressing these issues will help designers quantify the benefits of stabilization for pavement service life.
Resumo:
The well-known modified Garabedian-Mcfadden (MGM) method is an attractive alternative for aerodynamic inverse design, for its simplicity and effectiveness (P. Garabedian and G. Mcfadden, Design of supercritical swept wings, AIAA J. 20(3) (1982), 289-291; J.B. Malone, J. Vadyak, and L.N. Sankar, Inverse aerodynamic design method for aircraft components, J. Aircraft 24(2) (1987), 8-9; Santos, A hybrid optimization method for aerodynamic design of lifting surfaces, PhD Thesis, Georgia Institute of Technology, 1993). Owing to these characteristics, the method has been the subject of several authors over the years (G.S. Dulikravich and D.P. Baker, Aerodynamic shape inverse design using a Fourier series method, in AIAA paper 99-0185, AIAA Aerospace Sciences Meeting, Reno, NV, January 1999; D.H. Silva and L.N. Sankar, An inverse method for the design of transonic wings, in 1992 Aerospace Design Conference, No. 92-1025 in proceedings, AIAA, Irvine, CA, February 1992, 1-11; W. Bartelheimer, An Improved Integral Equation Method for the Design of Transonic Airfoils and Wings, AIAA Inc., 1995). More recently, a hybrid formulation and a multi-point algorithm were developed on the basis of the original MGM. This article discusses applications of those latest developments for airfoil and wing design. The test cases focus on wing-body aerodynamic interference and shock wave removal applications. The DLR-F6 geometry is picked as the baseline for the analysis.