12 resultados para Dependent Diabetes-mellitus
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Antioxidants probably play an important role in the etiology of type 2 diabetes (DM2). This study evaluated the effects of supplementation with lipoic acid (LA) and alpha-tocopherol on the lipid profile and insulin sensitivity of DM2 patients. A randomized, double-blind, placebo-controlled trial involving 102 DM2 patients divided into four groups to receive daily supplementation for 4 months with: 600 mg LA (n = 26); 800 mg alpha-tocopherol (n = 25); 800 mg alpha-tocopherol + 600 mg LA (n = 25); placebo (n = 26). Plasma alpha-tocopherol, lipid profile, glucose, insulin, and the HOMA index were determined before and after supplementation. Differences within and between groups were compared by ANOVA using Bonferroni correction. Student`s t-test was used to compare means of two independent variables. The vitamin E/total cholesterol ratio improved significantly in patients supplemented with vitamin E + LA and vitamin E alone (p <= 0.001). There were improvements of the lipid fractions in the groups receiving LA and vitamin E alone or in combination, and on the HOMA index in the LA group, but not significant. The results suggest that LA and vitamin E supplementation alone or in combination did not affect the lipid profile or insulin sensitivity of DM2 patients. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Diabetes mellitus is the most common endocrine disturbance of domestic carnivores and can cause autonomic neurological disorders, although these are still poorly understood in veterinary medicine. There is little information available on the quantitative adaptation mechanisms of the sympathetic ganglia during diabetes mellitus in domestic mammals. By combining morphometric methods and NADPH-diaphorase staining (as a possible marker for nitric oxide producing neurons), type I diabetes mellitus-related morphoquantitative changes were investigated in the celiac ganglion neurons in dogs. Twelve left celiac ganglia from adult female German shepherd dogs were examined: six ganglia were from non-diabetic and six from diabetic subjects. Consistent hypertrophy of the ganglia was noted in diabetic animals with increase of 55% in length, 53% in width, and 61.5% in thickness. The ordinary microstructure of the ganglia was modified leading to an uneven distribution of the ganglionic units and a more evident distribution of axon fascicles. In contrast to non-diabetic dogs, there was a lack of NADPH-diaphorase perikarial labelling in the celiac ganglion neurons of diabetic animals. The morphometric study showed that both the neuronal and nuclear sizes were significantly larger in diabetic dogs (1.3 and 1.39 times, respectively). The profile density and area fraction of NADPH-diaphorase-reactive celiac ganglion neurons were significantly larger (1.35 and 1.48 times, respectively) in non-diabetic dogs compared to NADPH-diaphorase-non-reactive celiac ganglion neurons in diabetic dogs. Although this study suggests that diabetic neuropathy is associated with neuronal hypertrophy, controversy remains over the possibility of ongoing neuronal loss and the functional interrelationship between them. It is unclear whether neuronal hypertrophy could be a compensation mechanism for a putative neuronal loss during the diabetes mellitus. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Background. Microencapsulation of pancreatic islets with polymeric compounds constitutes an attractive alternative therapy for type 1 diabetes mellitus. The major limiting factor is the availability of a biocompatible and mechanically stable polymer. We investigated the potential of Biodritin, a novel polymer constituted of alginate and chondroitin sulfate, for islet microencapsulation. Methods. Biodritin microcapsules were obtained using an air jet droplet generator and gelated with barium or calcium chloride. Microencapsulated rat insulinoma RINm5F cells were tested for viability using the [3-(4,5-dimetyl-thiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide] [MTT] colorimetric assay. Microencapsulated rat pancreatic islets were coincubated with macrophages derived from mouse peritoneal liquid to assess the immunomodulatory potential of the microcapsules, using quantitative real time-PCR (qPCR). Biodritin biocompatibility was demonstrated by subcutaneous injection of empty microcapsules into immunocompetent Wistar rats. Insulin secretion by microencapsulated human pancreatic islets was evaluated using an electrochemoluminescent assay. Microencapsulated human islets transplanted into chemically induced diabetic mice were monitored for reversal of hyperglycemia. Results. The metabolic activity of microencapsulated RINm5F cells persisted for at least 15 days. Interleukin-1 beta expression by macrophages was observed during coculture with islets microencapsulated with Biodritin-CaCl2, but not with Biodritin-BaCl2. No statistical difference in glucose-stimulated insulin secretion was observed between nonencapsulated and microencapsulated islets. Upon microencapsulated islet transplantation, the blood glucose level of diabetic mice normalized; they remained euglycemic for at least 60 days, displaying normal oral glucose tolerance tests. Conclusion. This study demonstrated that Biodritin can be used for islet microencapsulation and reversal of diabetes; however, further investigations are required to assess its potential for long-term transplantation.
Resumo:
Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.
Resumo:
Background: Diabetes and periodontitis produce a protein discharge that can be reflected in saliva. This study evaluates the salivary concentrations of interleukin (IL)-6, matrix metalloproteinase (MMP)-8, and osteoprotegerin (OPG) in patients with periodontitis with type 2 diabetes. Methods: Whole saliva samples were obtained from 90 subjects who were divided into four groups: healthy (control; n = 22), untreated periodontitis (UPD; n = 24), diabetes mellitus (DM; n = 20), and UPD + DM (n = 24) groups. Clinical and metabolic data were recorded. Salivary IL-6, MMP-8, and OPG concentrations were determined by a standard enzyme-linked immunosorbent assay. Results: The UPD and UPD + DM groups exhibited higher salivary IL-6 than the control and DM groups (P <0.01). The salivary MMP-8 concentrations in all diseased groups (UPD, DM, and UPD + DM) were higher than in the control group (P <0.01). The salivary OPG concentrations in the DM group were higher than in the UPD and control groups (P<0.05). In the UPD + DM group, salivary IL-6 was correlated with glycated hemoglobin (HbA1c) levels (r = 0.60; P<0.05). The regression analysis indicated that the number of remaining teeth, clinical attachment level, and IL-6 might have influenced the HbA1c levels in patients with diabetes. Conclusions: Salivary 1L-6 concentrations were elevated in patients with periodontitis with or without diabetes. Salivary MMP-8 and OPG concentrations were elevated regardless of periodontal inflammation in patients with diabetes. Therefore, periodontitis and diabetes are conditions that may interfere with protein expression and should be considered when using saliva for diagnoses. J Periodontol 2010;81:384-391.
Resumo:
Aim: The objective of this study is to assess the contribution of ADIPOQ variants to type 2 diabetes in Japanese Brazilians. Methods: We genotyped 200 patients with diabetes mellitus (100 male and 100 female, aged 55.0 years [47.5-64.0 years]) and 200 control subjects with normal glucose tolerant (NGT) (72 male and 128 female, aged 52.0 years [43.5-64.5 years]). Results: Whereas each polymorphism studied (T45G, G276T, and A349G) was not significantly associated with type 2 diabetes mellitus, the haplotype GGA was overrepresented in our diabetic population (9.3% against 3.1% in NGT individuals, P=.0003). Also, this haplotype was associated with decreased levels of adiponectin. We also identified three mutations in exon 3: I164T, R221S, and H241P, but, owing to the low frequencies of them, associations with type 2 diabetes could not be evaluated. The subjects carrying the R221S mutation had plasma adiponectin levels lower than those without the mutation (2.10 mu g/ml [1.35-2.55 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml], P=.015). Similarly, the I164T mutation carriers had mean plasma adiponectin levels lower than those noncarriers (3.73 mu g/ml [3.10-4.35 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml]), but this difference was not significant (P=.17). Conclusions: We identified in the ADIPOQ gene a risk haplotype for type 2 diabetes in the Japanese Brazilian population. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The Brazilian Osteoporosis Study (BRAZOS) is the first epidemiological study carried out in a representative sample of Brazilian men and women aged 40 years or older. The prevalence of fragility fractures is about 15.1% in the women and 12.8% in the men. Moreover, advanced age, sedentarism, family history of hip fracture, current smoking, recurrent falls, diabetes mellitus and poor quality of life are the main clinical risk factors associated with fragility fractures. The Brazilian Osteoporosis Study (BRAZOS) is the first epidemiological study carried out in a representative sample of Brazilian men and women aged 40 years or older with the purpose of identifying the prevalence and the main clinical risk factors (CRF) associated with osteoporotic fracture in our population. A total of 2,420 individuals (women, 70%) from 150 different cities in the five geographic regions in Brazil, and all different socio-economical classes were selected to participate in the present survey. Anthropometrical data as well as life habits, fracture history, food intake, physical activity, falls and quality of life were determined by individual quantitative interviews. The representative sampling was based on Brazilian National data provided by the 2000 and 2003 census. Low trauma fracture was defined as that resulting of a fall from standing height or less in individuals 50 years or older at specific skeletal sites: forearm, femur, ribs, vertebra and humerus. Sampling error was 2.2% with 95% confidence intervals. Logistic regression analysis models were designed having the fragility fracture as the dependent variable and all other parameters as the independent variable. Significance level was set as p < 0.05. The average of age, height and weight for men and women were 58.4 +/- 12.8 and 60.1 +/- 13.7 years, 1.67 +/- 0.08 and 1.56 +/- 0.07 m and 73.3 +/- 14.7 and 64.7 +/- 13.7 kg, respectively. About 15.1% of the women and 12.8% of the men reported fragility fractures. In the women, the main CRF associated with fractures were advanced age (OR = 1.6; 95% CI 1.06-2.4), family history of hip fracture (OR = 1.7; 95% CI 1.1-2.8), early menopause (OR = 1.7; 95% CI 1.02-2.9), sedentary lifestyle (OR = 1.6; 95% CI 1.02-2.7), poor quality of life (OR = 1.9; 95% CI 1.2-2.9), higher intake of phosphorus (OR = 1.9; 95% CI 1.2-2.9), diabetes mellitus (OR = 2.8; 95% CI 1.01-8.2), use of benzodiazepine drugs (OR = 2.0; 95% CI 1.1-3.6) and recurrent falls (OR = 2.4; 95% CI 1.2-5.0). In the men, the main CRF were poor quality of life (OR = 3.2; 95% CI 1.7-6.1), current smoking (OR = 3.5; 95% CI 1.28-9.77), diabetes mellitus (OR = 4.2; 95% CI 1.27-13.7) and sedentary lifestyle (OR = 6.3; 95% CI 1.1-36.1). Our findings suggest that CRF may contribute as an important tool to identify men and women with higher risk of osteoporotic fractures and that interventions aiming at specific risk factors (quit smoking, regular physical activity, prevention of falls) may help to manage patients to reduce their risk of fracture.
Resumo:
Oral health complications in diabetes include decreased salivary secretion. The SLC5A1 gene encodes the Na(+)-glucose cotransporter SGLT1 protein, which not only transports glucose, but also acts as a water channel. Since SLC5A1 expression is altered in kidneys of diabetic subjects, we hypothesize that it could also be altered in salivary glands, contributing to diabetic dysfunction. The present study shows a diabetes-induced decrease (p < 0.001) in salivary secretion, which was accompanied by enhanced (p < 0.05) SGLT1 mRNA expression in parotid (50%) and submandibular (30%) glands. Immunohistochemical analysis of parotid gland of diabetic rats revealed that SGLT1 protein expression increased in the luminal membrane of ductal cells, which can stimulate water reabsorption from primary saliva. Furthermore, SGLT1 protein was reduced in myoepithelial cells of the parotid from diabetic animals, and that, by reducing cellular contractile activity, might also be related to reduced salivary flux. Six-day insulin-treated diabetic rats reversed all alterations. In conclusion, diabetes increases SLC5A1 gene expression in salivary glands, increasing the SGLT1 protein content in the luminal membrane of ductal cells, which, by increasing water reabsorption, might explain the diabetes-induced decrease in salivary secretion.
Resumo:
Pregnancy is accompanied by hyperestrogenism, however, the role of estrogens in the gestational-induced insulin resistance is unknown. Skeletal muscle plays a fundamental role in this resistance, where GLUT4 regulates glucose uptake. We investigated: (1) effects of oophorectomy and estradiol (E2) on insulin sensitivity and GLUT4 expression. E2 (similar to 200 nM) for 7 days decreased sensitivity, reducing similar to 30% GLUT4 mRNA and protein (P< 0.05) and plasma membrane expression in muscle; (2) the expression of ER alpha and ER beta in L6 myotubes, showing that both coexpress in the same nucleus; (3) effects of E2 on GLUT4 in L6, showing a time- and dose-dependent response. High concentration (100 nM) for 6 days reduced similar to 25% GLUT4 mRNA and protein (P < 0.05). Concluding, E2 regulates GLUT4 in muscle, and at high concentrations, such as in pregnancy, reduces GLUT4 expression and, in vivo, decreases insulin sensitivity. Thus, hyperestrogenism may be involved in the pregnancy-induced insulin resistance and/or gestational diabetes. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.
Resumo:
To characterize the roles of C-peptide in vascular homeostatic processes, we examined the genes regulated by C-peptide in LEII mouse lung microvascular endothelial cells. Treatment of the cells with C-peptide increased the expression of c-Jun N-terminal kinase 1 (JNK1) mRNA dose-dependently, accompanied by an increase in JNK1 protein content. Prior treatment of the cells with PD98059, an ERK kinase inhibitor or SB203580, a p38MAPK inhibitor, abrogated the C-peptide-elicited JNK1 mRNA expression. These results indicate that C-peptide increases JNK1 protein levels, possibly through ERK- and p38MAPK-dependent activation of JNK. gene transcription.
Resumo:
Glucose transporter 4 (GLUT4) expression in adipose tissue decreases during fasting. In skeletal muscle, we hypothesized that GLUT4 expression might be maintained in a beta-adrenergic-dependent way to ensure energy disposal for contractile function. Herein we investigate beta-blockade or beta-stimulation effects on GLUT4 expression in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscles of fasted rats. Fasting increased GLUT4 mRNA in soleus (24%) and EDL (40%) but the protein content increased only in soleus (30%). beta 1-beta 2-, and beta 1-beta 2-beta 3-blockade decreased (20-30%) GLUT4 mRNA content in both muscles, although GLUT4 protein decreased only in EDL. When mRNA and GLUT4 protein regulations were discrepant, changes in the mRNA poly(A) tail length were detected, indicating a posttranscriptional modulation of gene expression. These results show that beta-adrenergic activity regulates GLUT4 gene expression in skeletal muscle during fasting, highlighting its participation in preservation of GLUT4 protein in glycolytic muscle. Muscle Nerve 40: 847-854, 2009