53 resultados para Deoxy hipusina synthase
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Nitric oxide synthase (NOS) has been reported to be involved with both bone healing and bone metabolism. The aim of this study was to test the null hypothesis that there is no correlation between new bone formation during mandibular distraction osteogenesis and NOS expression in the trigeminal ganglion of rats. Newly formed tissue during distraction osteogenesis and trigeminal NOS expression measured by the NADPH-diaphorase (NADPH-d) reaction were evaluated in 72 male Wistar rats by histomorphometric and histochemical methods. In animals submitted to 0.5 mm/day distraction osteogenesis, the percentage of bone tissue was higher in the basal area of the mandibles compared with the center and significantly increased through the experimental periods (P < 0.05). At the sixth postoperative week, the difference in bone formation between the continuous and acute distraction osteogenesis groups was the highest. Significant correlation between new bone formation by distraction osteogenesis and NADPH-d-reactive neurons was found, varying according to neuronal cell size (r = -0.6, P = 0.005, small cells strongly stained; r = 0.5, P = 0.018, large cells moderately stained). The results suggest that NOS may play a role in the bone healing process via neurogenic pathways, and the phenomenon seems to be neuronal cell morphotype-dependent. Further studies are now warranted to investigate the mechanistic link between the expression of trigeminal NOS and mandibular new bone formation by distraction osteogenesis.
Resumo:
Vegetables are critical for human health as they are a source of multiple vitamins including vitamin E (VTE). In plants, the synthesis of VTE compounds, tocopherol and tocotrienol, derives from precursors of the shikimate and methylerythritol phosphate pathways. Quantitative trait loci (QTL) for alpha-tocopherol content in ripe fruit have previously been determined in an Solanum pennellii tomato introgression line population. In this work, variations of tocopherol isoforms (alpha, beta, gamma, and delta) in ripe fruits of these lines were studied. In parallel all tomato genes structurally associated with VTE biosynthesis were identified and mapped. Previously identified VTE QTL on chromosomes 6 and 9 were confirmed whilst novel ones were identified on chromosomes 7 and 8. Integrated analysis at the metabolic, genetic and genomic levels allowed us to propose 16 candidate loci putatively affecting tocopherol content in tomato. A comparative analysis revealed polymorphisms at nucleotide and amino acid levels between Solanum lycopersicum and S. pennellii candidate alleles. Moreover, evolutionary analyses showed the presence of codons evolving under both neutral and positive selection, which may explain the phenotypic differences between species. These data represent an important step in understanding the genetic determinants of VTE natural variation in tomato fruit and as such in the ability to improve the content of this important nutriceutical.
Resumo:
The role of PPAR-gamma in ciglitazone and 15-d PGJ(2)-induced apoptosis and cell cycle arrest of Jurkat (before and after PPAR gamma gene silencing), U937 (express high levels of PPAR gamma) and HeLa (that express very low levels of PPAR gamma) cells was investigated. PPAR gamma gene silencing, per se, induced a G2/M cell arrest, loss of membrane integrity and DNA fragmentation of Jurkat cells, indicating that PPAR gamma is important for this cell survival and proliferation. Ciglitazone-induced apoptosis was abolished after knockdown of PPAR gamma suggesting a PPAR gamma-dependent pro-apoptotic effect. However, ciglitazone treatment was toxic for U937 and HeLa cells regardless of the presence of PPAR gamma. This treatment did not change the cell cycle distribution corroborating with a PPAR gamma-independent mechanism. On the other hand, 15-d PGJ(2) induced apoptosis of the three cancer cell lines regardless of the expression of PPAR gamma. These results suggest that PPAR gamma plays an important role for death of malignant T lymphocytes (Jurkat cells) and PPAR gamma agonists exert their effects through PPAR gamma-dependent and -independent mechanisms depending on the drug and the cell type. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
O-GlcNAcylation augments vascular contractile responses, and O-GlcNAc-proteins are increased in the vasculature of deoxycorticosterone-acetate salt rats. Because endothelin 1 (ET-1) plays a major role in vascular dysfunction associated with salt-sensitive forms of hypertension, we hypothesized that ET-1-induced changes in vascular contractile responses are mediated by O-GlcNAc modification of proteins. Incubation of rat aortas with ET-1 (0.1 mu mol/L) produced a time-dependent increase in O-GlcNAc levels and decreased expression of O-GlcNAc transferase and beta-N-acetylglucosaminidase, key enzymes in the O-GlcNAcylation process. Overnight treatment of aortas with ET-1 increased phenylephrine vasoconstriction (maximal effect [in moles]: 19 +/- 5 versus 11 +/- 2 vehicle). ET-1 effects were not observed when vessels were previously instilled with anti-O-GlcNAc transferase antibody or after incubation with an O-GlcNAc transferase inhibitor (3-[2-adamantanylethyl]-2-[{4-chlorophenyl}azamethylene]-4-oxo-1,3-thiazaperhyd roine-6-carboxylic acid; 100 mu mol/L). Aortas from deoxycorticosterone-acetate salt rats, which exhibit increased prepro-ET-1, displayed increased contractions to phenylephrine and augmented levels of O-GlcNAc proteins. Treatment of deoxycorticosterone-acetate salt rats with an endothelin A antagonist abrogated augmented vascular levels of O-GlcNAc and prevented increased phenylephrine vasoconstriction. Aortas from rats chronically infused with low doses of ET-1 (2 pmol/kg per minute) exhibited increased O-GlcNAc proteins and enhanced phenylephrine responses (maximal effect [in moles]: 18 +/- 2 versus 10 +/- 3 control). These changes are similar to those induced by O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate, an inhibitor of beta-N-acetylglucosaminidase. Systolic blood pressure (in millimeters of mercury) was similar between control and ET-1-infused rats (117 +/- 3 versus 123 +/- 4 mm Hg; respectively). We conclude that ET-1 indeed augments O-GlcNAc levels and that this modification contributes to the vascular changes induced by this peptide. Increased vascular O-GlcNAcylation by ET-1 may represent a mechanism for hypertension-associated vascular dysfunction or other pathological conditions associated with increased levels of ET-1. (Hypertension. 2010; 55: 180-188.)
Resumo:
Innate immune recognition of flagellin is shared by transmembrane TLR5 and cytosolic Nlrc4 (NOD-like receptor family CARD (caspase activation recruitment domain) domain containing 4)/Naip5 (neuronal apoptosis inhibitory protein 5). TLR5 activates inflammatory genes through MYD88 pathway, whereas Nlrc4 and Naip5 assemble multiprotein complexes called inflammasomes, culminating in caspase-1 activation, IL-1 beta/IL-18 secretion, and pyroptosis. Although both TLR5 and Naip5/Nlrc4 pathways cooperate to clear infections, little is known about the relative anti-pathogen effector mechanisms operating through each of them. Here we show that the cytosolic flagellin (FLA-BSDot) was able to activate iNOS, an enzyme previously associated with TLR5 pathway. Using Nlrc4- or Naip5-deficient macrophages, we found that both receptors are involved in iNOS activation by FLA-BSDot. Moreover, distinct from extracellular flagellin (FLA-BS), iNOS activation by intracellular flagellin is completely abrogated in the absence of caspase-1. Interestingly, IL-1 beta and IL-18 do not seem to be important for FLA-BSDot-mediated iNOS production. Together, our data defined an additional anti-pathogen effector mechanism operated through Naip5 and Nlrc4 inflammasomes and illustrated a novel signaling transduction pathway that activates iNOS.
Resumo:
Background/Aim: Chagas` disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100 beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100 beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process. Methods: IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100 beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis. Results: No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p<0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p<0.01) and NOS (544%, p<0.001). Moreover, the intensity of nitrotyrosine (16%, p<0.01), NOS (38%, p<0.05) and S100 beta (21%, p<0.001) immunoreactivities were also augmented. No IFN-gamma labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.Conclusion: We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100 beta may contribute to NOS activation in the absence of IL-12. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Selenoproteins are characterized by the incorporation of at least one amino acid selenocysteine (Sec-U) encoded by in-frame UGA stop codons. These proteins, as well as the components of the Sec synthesis pathway, are present in members of the bacteria, archaea and eukaryote domains. Although not a ubiquitous pathway in all organisms, it was also identified in several protozoa, including the Kinetoplastida. Genetic evidence has indicated that the pathway is non-essential to the survival of Trypanosoma growing in non-stressed conditions. By analyzing the effects of RNA interference of the Trypanosoma brucei selenophosphate synthetase SPS2, we found a requirement under sub-optimal growth conditions. The present work shows that SPS2 is involved in oxidative stress protection of the parasite and its absence severely hampers the parasite survival in the presence of an oxidizing environment that results in an apoptotic-like phenotype and cell death. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
P>Aim To evaluate in vitro the effect of calcium hydroxide [Ca(OH)(2)] and Er:YAG laser on bacterial endotoxin [also known as lipopolysaccharide (LPS)] as determined by nitric oxide (NO) detection in J774 murine macrophage cell line culture. Methodology Samples of LPS solution (50 mu gmL-1), Ca(OH)(2) suspension (25 mg mL-1) and LPS suspension with Ca(OH)(2) were prepared. The studied groups were: I - LPS (control); II - LPS + Ca(OH)(2); III - LPS + Er:YAG laser (15 Hz 140 mJ); IV - LPS + Er:YAG laser (15 Hz 200 mJ); V - LPS + Er:YAG laser (15 Hz 250 mJ), VI - Pyrogen-free water; VII - Ca(OH)(2). Murine macrophage J774 cells were plated and 10 mu L of the samples were added to each well. The supernatants were collected for NO detection by the Griess reaction. Data were analysed statistically by one-way anova and Tukey`s test at 5% significance level. Results The mean and SE (in mu mol L-1) values of NO release were: I - 10.48 +/- 0.58, II - 6.41 +/- 0.90, III - 10.2 +/- 0.60, IV - 8.35 +/- 0.40, V - 10.40 +/- 0.53, VI - 3.75 +/- 0.70, VII - 6.44 +/- 0.60; and the values for the same experiment repeated after 1 week were: I - 21.20 +/- 1.50, II - 9.10 +/- 0.60, III - 19.50 +/- 1.00, IV - 18.50 +/- 0.60, V - 21.30 +/- 0.90, VI - 2.00 +/- 0.20, VII - 6.80 +/- 1.70. There was no significant difference (P > 0.05) between the control and the laser-treated groups (III, IV and V), or comparing groups II, VI and VII to each other (P > 0.05). Group I had significantly higher NO release than group II (P < 0.05). Groups II and VI had similar NO release (P > 0.05). Conclusions Calcium hydroxide inactivated the bacterial endotoxin (LPS) whereas none of the Er:YAG laser parameter settings had the same effectiveness.
Resumo:
Objective. The objective of this study was to evaluate the effect of a calcium hydroxide Ca(OH)(2)-based paste (Calen) associated or not to 0.4% chlorhexidine digluconate (CHX) on RAW 264.7 macrophage cell line culture. Study design. The cell viability (MTT assay), immunostimulating properties (NO dosage), and anti-inflammatory properties (NO, TNF-alpha, and IL-1 alpha dosage) were evaluated after cell exposure to the materials. Data were analyzed statistically by Kruskal-Wallis test at 5% significance level. Results. There was low immunostimulating activity of the Calen paste associated or not to 0.4% CHX in the different materials` concentrations evaluated (P > .05). Anti-inflammatory activity with inhibition of NO and cytokine (TNF-alpha and IL1-alpha) release was observed only with Ca(OH)(2) + CHX at the highest concentration (25 mu g/mL). Conclusion. As the Calen paste associated to 0.4% CHX did not alter cell viability or the immunostimulating and anti-inflammatory properties, the addition of CHX brought no benefits to the Ca(OH)(2)-based paste with regard to the tested parameters. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:e44-e51)
Resumo:
Introduction: Endodontic chelators may extrude to apical tissues during instrumentation activating cellular events on periapical tissues. This study assessed in vitro the expression of nitric oxide (NO) concentrations by murine peritoneal macrophages after contact with MTAD (Dentsply/Tulsa, Tulsa, OK), Tetraclean (Ogna Laboratori Farmaceutici, Muggio, Italy), Smear Clear (Sybron Endo, Orange, CA), and EDTA (Biodinamica, Ibipora, PR, Brazil). Methods: Macrophage cells were obtained from Swiss mice after peritoneal lavage. Chelators were diluted in distilled water obtaining 12 concentrations, and MTT assay identified the concentrations, per group, displaying the highest cell viability (analysis of variance, p < 0.01). Selected concentrations were tested for NO expression using Griess reaction. Culture medium and lipopolysaccharide (LPS) were used as controls. Results: Analysis of variance and Tukey tests showed that all chelators displayed elevated NO concentrations compared with the negative control (p < 0.01). MTAD induced the lowest NO expression, followed by Tetraclean, EDTA, and Smear Clear. No difference was observed between MTAD and Tetraclean (p > 0.01), Tetraclean and EDTA (p > 0.01), and EDTA and Smear Clear (p > 0.01). LPS ranked similar to both EDTA and Smear Clear (p > 0.01). Conclusion: The tested endodontic chelators displayed severe proinflammatory effects on murine-cultured macrophages. Citric acid-based solutions induce lower No release than EDTA-based irrigants. (J Endod 2009;35:824-828)
Resumo:
Diabetes mellitus is the most common endocrine disturbance of domestic carnivores and can cause autonomic neurological disorders, although these are still poorly understood in veterinary medicine. There is little information available on the quantitative adaptation mechanisms of the sympathetic ganglia during diabetes mellitus in domestic mammals. By combining morphometric methods and NADPH-diaphorase staining (as a possible marker for nitric oxide producing neurons), type I diabetes mellitus-related morphoquantitative changes were investigated in the celiac ganglion neurons in dogs. Twelve left celiac ganglia from adult female German shepherd dogs were examined: six ganglia were from non-diabetic and six from diabetic subjects. Consistent hypertrophy of the ganglia was noted in diabetic animals with increase of 55% in length, 53% in width, and 61.5% in thickness. The ordinary microstructure of the ganglia was modified leading to an uneven distribution of the ganglionic units and a more evident distribution of axon fascicles. In contrast to non-diabetic dogs, there was a lack of NADPH-diaphorase perikarial labelling in the celiac ganglion neurons of diabetic animals. The morphometric study showed that both the neuronal and nuclear sizes were significantly larger in diabetic dogs (1.3 and 1.39 times, respectively). The profile density and area fraction of NADPH-diaphorase-reactive celiac ganglion neurons were significantly larger (1.35 and 1.48 times, respectively) in non-diabetic dogs compared to NADPH-diaphorase-non-reactive celiac ganglion neurons in diabetic dogs. Although this study suggests that diabetic neuropathy is associated with neuronal hypertrophy, controversy remains over the possibility of ongoing neuronal loss and the functional interrelationship between them. It is unclear whether neuronal hypertrophy could be a compensation mechanism for a putative neuronal loss during the diabetes mellitus. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Tenofovir disoproxil fumarate (TDF) is a first-line drug used in patients with highly active retroviral disease; however, it can cause renal failure associated with many tubular anomalies that may be due to down regulation of a variety of ion transporters. Because rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist induces the expression of many of these same transporters, we tested if the nephrotoxicity can be ameliorated by its use. High doses of TDF caused severe renal failure in rats accompanied by a reduction in endothelial nitric-oxide synthase and intense renal vasoconstriction; all of which were significantly improved by rosiglitazone treatment. Low-dose TDF did not alter glomerular filtration rate but produced significant phosphaturia, proximal tubular acidosis, polyuria and a reduced urinary concentrating ability. These alterations were caused by specific downregulation of the sodium-phosphorus cotransporter, sodium/hydrogen exchanger 3 and aquaporin 2. A Fanconi`s-like syndrome was ruled out as there was no proteinuria or glycosuria. Rosiglitazone reversed TDF-induced tubular nephrotoxicity, normalized urinary biochemical parameters and membrane transporter protein expression. These studies suggest that rosiglitazone treatment might be useful in patients presenting with TFV-induced nephrotoxicity especially in those with hypophosphatemia or reduced glomerular filtration rate.
Resumo:
Background. Obstructive nephropathy decreases renal blood flow (RBF) and glomerular filtration rate (GFR), causing tubular abnormalities, such as urinary concentrating defect, as well as increasing oxidative stress. This study aimed to evaluate the effects of N-acetylcysteine (NAC) on renal function, as well as on the protein expression of aquaporin 2 (AQP2) and endothelial nitric oxide synthase (eNOS), after the relief of bilateral ureteral obstruction (BUO). Methods. Adult male Wistar rats were divided into four groups: sham (sham operated); sham operated + 440 mg/kg body weight (BW) of NAC daily in drinking water, started 2 days before and maintained until 48 h after the surgery; BUO (24-h BUO only); BUO + NAC-pre (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started 2 days before BUO); and BUO + NAC-post (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started on the day of BUO relief). Experiments were conducted 48 h after BUO relief. Results. Serum levels of thiobarbituric reactive substances, which are markers of lipid peroxidation, were significantly lower in NAC-treated rats than in the BUO group rats. The administration of NAC provided significant protection against post-BUO GFR drops and reductions in RBF. Renal cortices and BUO rats presented decreased eNOS protein expression of eNOS in the renal cortex of BUO group rats, whereas it was partially recovered in BUO + NAC-pre group rats. Urine osmolality was significantly lower in BUO rats than in sham group rats or NAC-treated rats, the last also presenting less interstitial fibrosis. Post-BUO downregulation of AQP2 protein expression was averted in the BUO + NAC-pre group rats. Conclusions. This study demonstrates that NAC administration ameliorates the renal function impairment observed 48 h after the relief of 24-h BUO. Oxidative stress is important for the suppression of GFR, RBF, tissue AQP2 and eNOS in the polyuric phase after the release of BUO.
Resumo:
This study alms at observing the effect of low-density lipoprotein (LDL) receptor deficiency in cholesterol blood levels, baroreflex sensitivity (BRS), nitric oxide (NO) bioavailability, and oxidative stress. The lack of LDL receptors in mice significantly increased the cholesterol blood levels (179 +/- 35 vs. 109 +/- 13 mg/dL) in the knockout (KO) mice compared to control. There was no difference in basal mean arterial pressure and heart rate between the groups. However, in KO mice the BRS was significantly attenuated and the antioxidant enzyme activities, measured in erythrocytes and heart, were significantly decreased. On the other hand, the oxidative damage measured by chemiluminescence and carbonyls was increased, while total plasma nitrate levels were lower in KO mice, indicating a decrease in NO availability. In conclusion, these results indicate that the lack of LDL receptor increased cholesterol blood levels, induced oxidative stress and decreased BRS. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
During seedling establishment, cotyledons of the rain forest tree Hymenaea courbaril mobilize storage cell wall xyloglucan to sustain growth. The polysaccharide is degraded and its products are transported to growing sink tissues. Auxin from the shoot controls the level of xyloglucan hydrolytic enzymes. It is not yet known how important the expression of these genes is for the control of storage xyloglucan degradation. In this work, partial cDNAs of the genes xyloglucan transglycosylase hydrolase (HcXTH1) and beta-galactosidase (HcBGAL1), both related to xyloglucan degradation, and two other genes related to sucrose metabolism [alkaline invertase (HcAlkIN1) and sucrose synthase (HcSUS1)], were isolated. The partial sequences were characterized by comparison with sequences available in the literature, and phylogenetic trees were assembled. Gene expression was evaluated at intervals of 6 h during 24 h in cotyledons, hypocotyl, roots, and leaves, using 45-d-old plantlets. HcXTH1 and HcBGAL1 were correlated to xyloglucan degradation and responded to auxin and light, being down-regulated when transport of auxin was prevented by N-1-naphthylphthalamic acid (NPA) and stimulated by constant light. Genes related to sucrose metabolism, HcAlkIN1 and HcSUS1, responded to inhibition of auxin transport in consonance with storage mobilization in the cotyledons. A model is proposed suggesting that auxin and light are involved in the control of the expression of genes related to storage xyloglucan mobilization in seedlings of H. courbaril. It is concluded that gene expression plays a role in the control of the intercommunication system of the source-sink relationship during seeding growth, favouring its establishment in the shaded environment of the rain forest understorey.