18 resultados para Data-Mining Techniques
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.
Resumo:
Melanoma is a highly aggressive and therapy resistant tumor for which the identification of specific markers and therapeutic targets is highly desirable. We describe here the development and use of a bioinformatic pipeline tool, made publicly available under the name of EST2TSE, for the in silico detection of candidate genes with tissue-specific expression. Using this tool we mined the human EST (Expressed Sequence Tag) database for sequences derived exclusively from melanoma. We found 29 UniGene clusters of multiple ESTs with the potential to predict novel genes with melanoma-specific expression. Using a diverse panel of human tissues and cell lines, we validated the expression of a subset of three previously uncharacterized genes (clusters Hs.295012, Hs.518391, and Hs.559350) to be highly restricted to melanoma/melanocytes and named them RMEL1, 2 and 3, respectively. Expression analysis in nevi, primary melanomas, and metastatic melanomas revealed RMEL1 as a novel melanocytic lineage-specific gene up-regulated during melanoma development. RMEL2 expression was restricted to melanoma tissues and glioblastoma. RMEL3 showed strong up-regulation in nevi and was lost in metastatic tumors. Interestingly, we found correlations of RMEL2 and RMEL3 expression with improved patient outcome, suggesting tumor and/or metastasis suppressor functions for these genes. The three genes are composed of multiple exons and map to 2q12.2, 1q25.3, and 5q11.2, respectively. They are well conserved throughout primates, but not other genomes, and were predicted as having no coding potential, although primate-conserved and human-specific short ORFs could be found. Hairpin RNA secondary structures were also predicted. Concluding, this work offers new melanoma-specific genes for future validation as prognostic markers or as targets for the development of therapeutic strategies to treat melanoma.
Resumo:
Age-related changes in running kinematics have been reported in the literature using classical inferential statistics. However, this approach has been hampered by the increased number of biomechanical gait variables reported and subsequently the lack of differences presented in these studies. Data mining techniques have been applied in recent biomedical studies to solve this problem using a more general approach. In the present work, we re-analyzed lower extremity running kinematic data of 17 young and 17 elderly male runners using the Support Vector Machine (SVM) classification approach. In total, 31 kinematic variables were extracted to train the classification algorithm and test the generalized performance. The results revealed different accuracy rates across three different kernel methods adopted in the classifier, with the linear kernel performing the best. A subsequent forward feature selection algorithm demonstrated that with only six features, the linear kernel SVM achieved 100% classification performance rate, showing that these features provided powerful combined information to distinguish age groups. The results of the present work demonstrate potential in applying this approach to improve knowledge about the age-related differences in running gait biomechanics and encourages the use of the SVM in other clinical contexts. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The productivity associated with commonly available disassembly methods today seldomly makes disassembly the preferred end-of-life solution for massive take back product streams. Systematic reuse of parts or components, or recycling of pure material fractions are often not achievable in an economically sustainable way. In this paper a case-based review of current disassembly practices is used to analyse the factors influencing disassembly feasibility. Data mining techniques were used to identify major factors influencing the profitability of disassembly operations. Case characteristics such as involvement of the product manufacturer in the end-of-life treatment and continuous ownership are some of the important dimensions. Economic models demonstrate that the efficiency of disassembly operations should be increased an order of magnitude to assure the competitiveness of ecologically preferred, disassembly oriented end-of-life scenarios for large waste of electric and electronic equipment (WEEE) streams. Technological means available to increase the productivity of the disassembly operations are summarized. Automated disassembly techniques can contribute to the robustness of the process, but do not allow to overcome the efficiency gap if not combined with appropriate product design measures. Innovative, reversible joints, collectively activated by external trigger signals, form a promising approach to low cost, mass disassembly in this context. A short overview of the state-of-the-art in the development of such self-disassembling joints is included. (c) 2008 CIRP.
Resumo:
Since the 1990s several large companies have been publishing nonfinancial performance reports. Focusing initially on the physical environment, these reports evolved to consider social relations, as well as data on the firm`s economic performance. A few mining companies pioneered this trend, and in the last years some of them incorporated the three dimensions of sustainable development, publishing so-called sustainability reports. This article reviews 31 reports published between 2001 and 2006 by four major mining companies. A set of 62 assessment items organized in six categories (namely context and commitment, management, environmental, social and economic performance, and accessibility and assurance) were selected to guide the review. The items were derived from international literature and recommended best practices, including the Global Reporting Initiative G3 framework. A content analysis was performed using the report as a sampling unit, and using phrases, graphics, or tables containing certain information as data collection units. A basic rating scale (0 or 1) was used for noting the presence or absence of information and a final percentage score was obtained for each report. Results show that there is a clear evolution in report`s comprehensiveness and depth. Categories ""accessibility and assurance"" and ""economic performance"" featured the lowest scores and do not present a clear evolution trend in the period, whereas categories ""context and commitment"" and ""social performance"" presented the best results and regular improvement; the category ""environmental performance,"" despite it not reaching the biggest scores, also featured constant evolution. Description of data measurement techniques, besides more comprehensive third-party verification are the items most in need of improvement.
Resumo:
Most multidimensional projection techniques rely on distance (dissimilarity) information between data instances to embed high-dimensional data into a visual space. When data are endowed with Cartesian coordinates, an extra computational effort is necessary to compute the needed distances, making multidimensional projection prohibitive in applications dealing with interactivity and massive data. The novel multidimensional projection technique proposed in this work, called Part-Linear Multidimensional Projection (PLMP), has been tailored to handle multivariate data represented in Cartesian high-dimensional spaces, requiring only distance information between pairs of representative samples. This characteristic renders PLMP faster than previous methods when processing large data sets while still being competitive in terms of precision. Moreover, knowing the range of variation for data instances in the high-dimensional space, we can make PLMP a truly streaming data projection technique, a trait absent in previous methods.
Resumo:
Background: The inherent complexity of statistical methods and clinical phenomena compel researchers with diverse domains of expertise to work in interdisciplinary teams, where none of them have a complete knowledge in their counterpart's field. As a result, knowledge exchange may often be characterized by miscommunication leading to misinterpretation, ultimately resulting in errors in research and even clinical practice. Though communication has a central role in interdisciplinary collaboration and since miscommunication can have a negative impact on research processes, to the best of our knowledge, no study has yet explored how data analysis specialists and clinical researchers communicate over time. Methods/Principal Findings: We conducted qualitative analysis of encounters between clinical researchers and data analysis specialists (epidemiologist, clinical epidemiologist, and data mining specialist). These encounters were recorded and systematically analyzed using a grounded theory methodology for extraction of emerging themes, followed by data triangulation and analysis of negative cases for validation. A policy analysis was then performed using a system dynamics methodology looking for potential interventions to improve this process. Four major emerging themes were found. Definitions using lay language were frequently employed as a way to bridge the language gap between the specialties. Thought experiments presented a series of ""what if'' situations that helped clarify how the method or information from the other field would behave, if exposed to alternative situations, ultimately aiding in explaining their main objective. Metaphors and analogies were used to translate concepts across fields, from the unfamiliar to the familiar. Prolepsis was used to anticipate study outcomes, thus helping specialists understand the current context based on an understanding of their final goal. Conclusion/Significance: The communication between clinical researchers and data analysis specialists presents multiple challenges that can lead to errors.
Resumo:
One of the top ten most influential data mining algorithms, k-means, is known for being simple and scalable. However, it is sensitive to initialization of prototypes and requires that the number of clusters be specified in advance. This paper shows that evolutionary techniques conceived to guide the application of k-means can be more computationally efficient than systematic (i.e., repetitive) approaches that try to get around the above-mentioned drawbacks by repeatedly running the algorithm from different configurations for the number of clusters and initial positions of prototypes. To do so, a modified version of a (k-means based) fast evolutionary algorithm for clustering is employed. Theoretical complexity analyses for the systematic and evolutionary algorithms under interest are provided. Computational experiments and statistical analyses of the results are presented for artificial and text mining data sets. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A large amount of biological data has been produced in the last years. Important knowledge can be extracted from these data by the use of data analysis techniques. Clustering plays an important role in data analysis, by organizing similar objects from a dataset into meaningful groups. Several clustering algorithms have been proposed in the literature. However, each algorithm has its bias, being more adequate for particular datasets. This paper presents a mathematical formulation to support the creation of consistent clusters for biological data. Moreover. it shows a clustering algorithm to solve this formulation that uses GRASP (Greedy Randomized Adaptive Search Procedure). We compared the proposed algorithm with three known other algorithms. The proposed algorithm presented the best clustering results confirmed statistically. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image-Projection Explorer for Images-a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.
Resumo:
Objetivou-se com este trabalho utilizar regras de associação para identificar forças de mercado que regem a comercialização de touros com avaliação genética pelo programa Nelore Brasil. Essas regras permitem evidenciar padrões implícitos nas transações de grandes bases de dados, indicando causas e efeitos determinantes da oferta e comercialização de touros. Na análise foram considerados 19.736 registros de touros comercializados, 17 fazendas e 15 atributos referentes às diferenças esperadas nas progênies dos reprodutores, local e época da venda. Utilizou-se um sistema com interface gráfica usuário-dirigido que permite geração e seleção interativa de regras de associação. Análise de Pareto foi aplicada para as três medidas objetivas (suporte, confiança e lift) que acompanham cada uma das regras de associação, para validação das mesmas. Foram geradas 2.667 regras de associação, 164 consideradas úteis pelo usuário e 107 válidas para lift ≥ 1,0505. As fazendas participantes do programa Nelore Brasil apresentam especializações na oferta de touros, segundo características para habilidade materna, ganho de peso, fertilidade, precocidade sexual, longevidade, rendimento e terminação de carcaça. Os perfis genéticos dos touros são diferentes para as variedades padrão e mocho. Algumas regiões brasileiras são nichos de mercado para touros sem registro genealógico. A análise de evolução de mercado sugere que o mérito genético total, índice oficial do programa Nelore Brasil, tornou-se um importante índice para comercialização dos touros. Com o uso das regras de associação, foi possível descobrir forças do mercado e identificar combinações de atributos genéticos, geográficos e temporais que determinam a comercialização de touros no programa Nelore Brasil.
Resumo:
This work describes the on-line characterization of minor flavones from sugarcane (Saccharum officinarum) juice by high-performance liquid chromatography coupled to diode array UV detection and mass spectrometry (LC/UV/MS) using atmospheric pressure chemical ionization-collision-induced dissociation (APCI-CID-MS/MS) and post-column derivatization using UV shift reagents. HPLC-UV analysis with shift reagents provided information about the substitution pattern in the flavonoid skeleton and, combined with MS data, these techniques allowed for the on-line identification of five "garapa" flavones: luteolin-8-C-glucosyl-7-O-glucuronide; tricin-7-O-neohesperoside-4'-O-rhamnoside; tricin-7-O-methylglucuronate-4'-O-rhamnoside; tricin-7-O-methylglucuronide; swertisin, while four other compounds were partially identified as glycosylflavones. Only swertisin (7-O-methylapigenin-6-C-glucoside) was reported previously in sugarcane molasses.
Resumo:
This paper aims to find relations between the socioeconomic characteristics, activity participation, land use patterns and travel behavior of the residents in the Sao Paulo Metropolitan Area (SPMA) by using Exploratory Multivariate Data Analysis (EMDA) techniques. The variables influencing travel pattern choices are investigated using: (a) Cluster Analysis (CA), grouping and characterizing the Traffic Zones (17), proposing the independent variable called Origin Cluster and, (b) Decision Tree (DT) to find a priori unknown relations among socioeconomic characteristics, land use attributes of the origin TZ and destination choices. The analysis was based on the origin-destination home-interview survey carried out in SPMA in 1997. The DT application revealed the variables of greatest influence on the travel pattern choice. The most important independent variable considered by DT is car ownership, followed by the Use of Transportation ""credits"" for Transit tariff, and, finally, activity participation variables and Origin Cluster. With these results, it was possible to analyze the influence of a family income, car ownership, position of the individual in the family, use of transportation ""credits"" for transit tariff (mainly for travel mode sequence choice), activities participation (activity sequence choice) and Origin Cluster (destination/travel distance choice). (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
Study Design: Data mining of single nucleotide polymorphisms (SNPs) in gene pathways related to spinal cord injury (SCI). Objectives: To identify gene polymorphisms putatively implicated with neuronal damage evolution pathways, potentially useful to SCI study. Setting: Departments of Psychiatry and Orthopedics, Faculdade de Medicina, Universidade de Sao Paulo, Brazil. Methods: Genes involved with processes related to SCI, such as apoptosis, inflammatory response, axonogenesis, peripheral nervous system development and axon ensheathment, were determined by evaluating the `Biological Process` annotation of Gene Ontology (GO). Each gene of these pathways was mapped using MapViewer, and gene coordinates were used to identify their polymorphisms in the SNP database. As a proof of concept, the frequency of subset of SNPs, located in four genes (ALOX12, APOE, BDNF and NINJ1) was evaluated in the DNA of a group of 28 SCI patients and 38 individuals with no SC lesions. Results: We could identify a total of 95 276 SNPs in a set of 588 genes associated with the selected GO terms, including 3912 nucleotide alterations located in coding regions of genes. The five non-synonymous SNPs genotyped in our small group of patients, showed a significant frequency, reinforcing their potential use for the investigation of SCI evolution. Conclusion: Despite the importance of SNPs in many aspects of gene expression and protein activity, these gene alterations have not been explored in SCI research. Here we describe a set of potentially useful SNPs, some of which could underlie the genetic mechanisms involved in the post trauma spinal cord damage.