18 resultados para DNA Fragmentation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The identity of the pro-opiomelanocortin (POMC)-derived mitogen in the adrenal cortex has been historically controversial. We have used well-established in vivo models, viz., hypophysectomized (Hyp) or dexamethasone (Dex)-treated rats, to study the effect of the synthetic modified peptide N-terminal POMC (N-POMC(1-28)) on DNA synthesis in the adrenal cortex, as assessed by BrdU incorporation and compared with adrenocorticotropic hormone (ACTH). We evaluated the importance of disulfide bridges on proliferation by employing N-POMC(1-28) without disulfide bridges and with methionines replacing cysteines. Acute administration of synthetic modified N-POMC(1-28) distinctly increased DNA synthesis in the zona glomerulosa and zona fasciculata, but not in the zona reticularis in Hyp rats, whereas in Dex-treated rats, this peptide was effective in all adrenal zones. ACTH administration led to an increase of BrdU-positive cells in all adrenal zones irrespective of the depletion of Hyp or Dex-POMC peptides. The use of the ACTH antagonist, ACTH(7-38), confirmed the direct participation of ACTH in proliferation. Two different approaches to measure apoptosis revealed that both peptides similarly exerted a protective effect on all adrenocortical zones, blocking the apoptotic cell death induced by hypophysectomy. Thus, ACTH(1-39) and N-POMC(1-28) have similar actions suggesting that the disulfide bridges are important but not essential. Both peptides seem to be important factors determining adrenocortical cell survival throughout the adrenal cortex, reinforcing the idea that each zone can be renewed from within itself.
Resumo:
The purpose of this study was to verify the effects of short periods of exercise of different intensity on lymphocyte function and cytokines. Thirty Wistar rats, 2 months old, were used. They were divided into five groups of six rats: a sedentary control group; a group exercised for 5 minutes at low intensity (5 L): a group exercised for 15 minutes at low intensity (15 L); and groups exercised at moderate intensity (additional load of 5% of body weight) for 5 minutes (5 M) or for 15 minutes (15 M). The parameters measured were: total leukocytes, neutrophils, lymphocytes, monocytes, lymphocytes from lymph nodes, serum cytokines (IL-2, IL-6 and TNF-alpha), lymphocyte mitochondrial transmembrane potential, viability and DNA fragmentation. ANOVA two way followed by Tukey`s post hoc test (p <= 0.05) was used. The exercised groups exhibited a significant increase in total leukocytes, tissue and circulating lymphocytes in comparison with the control group. There was a significant decrease in lymphocyte viability and decrease in DNA fragmentation for the 15 M group when compared with the control. There was a decrease in the level TNF-alpha in the 5 M and 15 M groups. Short-term, low- and moderate-intensity exercise may be considered for sedentary individuals beginning to exercise, since no deleterious alterations were observed in lymphocyte function.
Resumo:
Introduction/Purpose: The effect of a triathlon competition on death of neutrophils from elite athletes was investigated. Methods: Blood was collected from 11 sedentary volunteers and 12 triathletes under rest and after a Half Ironman triathlon competition (2-km swimming, 80-km cycling, and 20-km running). Results: The triathlon competition increased DNA fragmentation, phosphatidylserine externalization, and reactive oxygen species production in neutrophils when compared to the results at rest. The proportion of neutrophils with mitochondrial transmembrane depolarization was increased in the triathletes at rest and after competition as compared with sedentary volunteers. Plasma levels of thiobarbituric acid reactive substances were increased in triathletes after competition. Expression of bcl-xL (antiapoptotic) was decreased and that of bax (proapoptotic) was increased, whereas intracellular neutral lipid content was lowered in neutrophils after the triathlon. A positive correlation was found between the proportion of neutrophils with DNA fragmentation and the plasma free fatty acid levels (r = 0.688, P < 0.05), which was elevated by threefold after competition. Plasma levels of oleic, linoleic, and stearic acids were increased in triathletes after the competition when compared with sedentary volunteers. The plasma concentration of these three fatty acids, measured after the triathlon competition, was toxic for 3-h cultured neutrophils obtained from sedentary volunteers. The maximal tolerable (nontoxic) concentration of the fatty acids by 3-h cultured neutrophils was 100 mu mol.L-1 for oleic and linoleic acids and 200 mu mol.L-1 for stearic acid. Conclusion: The triathlon competition induced neutrophil death possibly by apoptosis as indicated by DNA fragmentation and phosphatidylserine externalization. The increase in plasma levels of oleic, linoleic, and stearic acids induced by the competition may be involved in the neutrophil death observed possibly by increasing the production of reactive oxygen species and by decreasing the accumulation of intracellular neutral lipid.
Resumo:
Objective: The aim of this study was to evaluate the effect of a high-fat diet (HFD) on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in rat pancreatic islets. We investigated if changes in NADPH oxidase are connected to beta cell dysfunction reported in obese animals. Methods: Male Wistar rats were fed a HFD or control diet for 3 months. DNA fragmentation, insulin secretion, and [U-(14)C] glucose oxidation were examined in isolated pancreatic islets. The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were assessed by immunohistochemistry. The protein content of gp91(phox) and p47(phox) was evaluated by Western blotting. Production of reactive oxygen species (ROS) was determined by a fluorescence assay using hydroethidine. Results: Occurrence of DNA fragmentation was reduced in pancreatic islets from HFD rats. There were no differences in oxidative stress markers between the groups. Glucose oxidation and insulin secretion were elevated due to high glucose in pancreatic islets from HFD rats. Protein concentrations of p47(phox) and gp91(phox) subunits were reduced and ROS production was diminished in pancreatic islets from HFD rats. Conclusions: The diminished content of NADPH oxidase subunits and ROS concentrations may be associated with increased glucose oxidation and insulin secretion in an attempt to compensate for the peripheral insulin resistance elicited by the HFD.
Resumo:
The role of PPAR-gamma in ciglitazone and 15-d PGJ(2)-induced apoptosis and cell cycle arrest of Jurkat (before and after PPAR gamma gene silencing), U937 (express high levels of PPAR gamma) and HeLa (that express very low levels of PPAR gamma) cells was investigated. PPAR gamma gene silencing, per se, induced a G2/M cell arrest, loss of membrane integrity and DNA fragmentation of Jurkat cells, indicating that PPAR gamma is important for this cell survival and proliferation. Ciglitazone-induced apoptosis was abolished after knockdown of PPAR gamma suggesting a PPAR gamma-dependent pro-apoptotic effect. However, ciglitazone treatment was toxic for U937 and HeLa cells regardless of the presence of PPAR gamma. This treatment did not change the cell cycle distribution corroborating with a PPAR gamma-independent mechanism. On the other hand, 15-d PGJ(2) induced apoptosis of the three cancer cell lines regardless of the expression of PPAR gamma. These results suggest that PPAR gamma plays an important role for death of malignant T lymphocytes (Jurkat cells) and PPAR gamma agonists exert their effects through PPAR gamma-dependent and -independent mechanisms depending on the drug and the cell type. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background The incorporation of lipid emulsions in parenteral diets is a requirement for energy and essential fatty acid supply to critically ill patients. The most frequently used IV lipid emulsions (LE) are composed with long-chain triacylglycerols rich in omega-6 polyunsaturated fatty acids (PUFA) from soybean oil, but these LE promote lymphocyte and neutrophil death. A new emulsion containing 20% soybean oil and 80% olive oil rich in (omega-9 monounsaturated fatty acids (MUFA) has been hypothesized not to cause impairment of immune function. In this study, the toxicity of an olive oil-based emulsion (OOE) on lymphocytes and neutrophils from healthy volunteers was investigated. Methods: Twenty volunteers were recruited and blood was. collected before a 6-hour infusion of an OOE, immediately after infusion, and again 18 hours postinfusion. Lymphocytes and neutrophils were isolated by gradient density. The cells were studied immediately after isolation and after 24 hours or 48 hours in culture. The following determinations were carried out: triacylglycerol levels and fatty acid composition and levels in plasma, lymphocyte proliferation, production of reactive oxygen species, and parameters of lymphocyte and neutrophil death (viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, and neutral lipid accumulation). Results: OOE decreased lymphocyte proliferation, provoked lymphocyte necrosis, and had no effect on the proportion of viable neutrophils. The mechanism of cell death induced by OOE involved neutral lipid accumulation but had no effect on mitochondrial membrane depolarization. Conclusions: The OOE given as a single dose of 500 mL induced low toxicity to lymphocytes from healthy volunteers, probably by necrosis.
Resumo:
Bromati CR, Lellis-Santos C, Yamanaka TS, Nogueira TC, Leonelli M, Caperuto LC, Gorjao R, Leite AR, Anhe GF, Bordin S. UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression. Am J Physiol Regul Integr Comp Physiol 300: R92-R100, 2011. First published November 10, 2010; doi:10.1152/ajpregu.00169.2010.-Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in beta-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2 alpha phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in beta-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in beta-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.
Resumo:
P>The genesis and progression of diabetes occur due in part to an uncontrolled inflammation profile with insulin resistance, increased serum levels of free fatty acids (FFA), proinflammatory cytokines and leucocyte dysfunction. In this study, an investigation was made of the effect of a 3-week moderate exercise regimen on a treadmill (60% of VO(2max), 30 min/day, 6 days a week) on inflammatory markers and leucocyte functions in diabetic rats. The exercise decreased serum levels of tumour necrosis factor (TNF)-alpha (6%), cytokine-induced neutrophil chemotactic factor 2 alpha/beta (CINC-2 alpha/beta) (9%), interleukin (IL)-1 beta (34%), IL-6 (86%), C-reactive protein (CRP) (41%) and FFA (40%) in diabetic rats when compared with sedentary diabetic animals. Exercise also attenuated the increased responsiveness of leucocytes from diabetics when compared to controls, diminishing the reactive oxygen species (ROS) release by neutrophils (21%) and macrophages (28%). Exercise did not change neutrophil migration and the proportion of neutrophils and macrophages in necrosis (loss of plasma membrane integrity) and apoptosis (DNA fragmentation). Serum activities of creatine kinase (CK) and lactate dehydrogenase (LDH) were not modified in the conditions studied. Therefore, physical training did not alter the integrity of muscle cells. We conclude that moderate physical exercise has marked anti-inflammatory effects on diabetic rats. This may be an efficient strategy to protect diabetics against microorganism infection, insulin resistance and vascular complications.
Resumo:
The high ingestion of oleic (OLA) and linoleic (LNA) acids by Western populations, the presence of inflammatory diseases in these populations, and the importance of neutrophils in the inflammatory process led us to investigate the effects of oral ingestion of unesterified OLA and LNA on rat neutrophil function. Pure OLA and LNA were administered by gavage over 10 days. The doses used (0.11, 0.22 and 0.44 g/kg of body weight) were based on the Western consumption of OLA and LNA. Neither fatty acid affected food, calorie or water intake. The fatty acids were not toxic to neutrophils as evaluated by cytometry using propidium iodide (membrane integrity and DNA fragmentation). Neutrophil migration in response to intraperitoneal injection of glycogen and in the air pouch assay, was elevated after administration of either OLA or LNA. This effect was associated with enhancement of rolling and increased release of the chemokine CINC-2 alpha beta. Both fatty acids elevated l-selectin expression, whereas no effect on beta(2)-integrin expression was observed, as evaluated by flow cytometry. LNA increased the production of proinflammatory cytokines (IL-1 beta and CINC-2 alpha beta) by neutrophils after 4 h in culture and both fatty acids decreased the release of the same cytokines after 18 h. In conclusion, OLA and LNA modulate several functions of neutrophils and can influence the inflammatory process.
Resumo:
The effect of an adventure race (Ecomotion Pr), which lasted for 4-5 days, on neutrophil and lymphocyte death from elite athletes was investigated. Blood was collected from 11 athletes at rest and after the adventure race. The following parameters of cell death were measured in neutrophils and lymphocytes: cell membrane integrity, DNA fragmentation, mitochondrial transmembrane depolarization and reactive oxygen species (ROS) production. Phagocytosis capacity was also evaluated in neutrophils. The adventure race raised the proportion of cells with the loss of membrane integrity; lymphocytes by 14% and neutrophils by 16.4%. The proportion of lymphocytes with DNA fragmentation (2.9-fold) and mitochondrial transmembrane depolarization (1.5-fold) increased. However, these parameters did not change in neutrophils. ROS production remained unchanged in lymphocytes, whereas an increase by 2.2-fold was found in neutrophils due to the race. Despite these changes, the phagocytosis capacity did not change in neutrophils after the race. In conclusion, the Ecomotion Pr race-induced neutrophil death by necrosis (as indicated by the loss of membrane integrity) and led to lymphocyte death by apoptosis (as indicated by increase DNA fragmentation and depolarization of mitochondrial membrane).
Resumo:
LEVADA-PIRES, A. C., M. F. CURY-BOAVENTURA, R. GORJAO, S. M. HIRABARA. E. F. PUGGINA, I. L. PELLEGRINOTTI, L. A. DOMINGUES FILHO, R. CURI, and T. C. PITHON-CURI. Induction of Lymphocyte Death by Short- and Long-Duration Triathlon Competitions. Med. Sci. Sporty Exerc., Vol. 4 1, No. 10, pp. 1896-1901, 2009. Purpose: The effect of triathlon competitions on death of lymphocytes from elite athletes was investigated. Material and Methods: Blood was collected from sedentary volunteers and triathletes at rest and after a short-duration triathlon (SDT) and after a long-duration triathlon (LDT-half Ironman) competitions. Results: The athletes had lowered lymphocyte proliferation capacity compared with sedentary volunteers either at rest or after the competitions. There was no difference in the parameters associated with lymphocyte death when sedentary volunteers were compared with triathletes at rest. Lymphocytes from triathletes after SDT competition showed an increase in DNA fragmentation, phosphatidylserine externalization, and mitochondrial transmembrane depolarization and did not alter membrane integrity when compared with cells from athletes at rest. In contrast, the LDT competition raised the proportion of lymphocytes with loss of membrane integrity when compared with cells from athletes at rest and did not change the apoptotic parameters. The LDT competition induced an increase of reactive oxygen species (ROS) production by lymphocytes compared with triathletes at rest. The SDT competition did not alter ROS production by lymphocytes when compared with cells from triathletes at rest. ROS production by lymphocytes after LDT competition was 60% higher than in SDT. Conclusions: Evidence is presented herein that an LDT competition caused lymphocyte death by necrosis, whereas an SDT induced lymphocyte apoptosis. The mechanism for lymphocyte death induced by the triathlon competitions may involve an increase in ROS production at different extents.
Resumo:
Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50 ppm HQ (1 h/day for 5 days). One hour later, oxidative burst, cell cycle. DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1 h later the last exposures, inflammation was induced by LPS inhalation (0.1 mg/ml/10 min) and 3 h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of beta(2) and beta(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ exposure, which may be considered in host defense in infectious diseases. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Epidemiological studies have indicated that Western diets are related to an increase in a series of malignancies. Among the compounds that are credited for this toxic effect are heme and lipid peroxides. We evaluated the effects of hemoglobin (Hb) and linoleic acid hydroperoxides (LAOOH) on a series of toxicological endpoints, such as cytotoxicity, redox status, lipid peroxidation, and DNA damage. We demonstrated that the preincubation of SW480 cells with Hb and its subsequent exposure to LAOOH (Hb + LAOOH) led to an increase in cell death, DCFH oxidation, malonaldehyde formation, and DNA fragmentation and that these effects were related to the peroxide group and the heme present in Hb. Furthermore, Hb and LAOOH alone exerted a toxic effect on the endpoints assayed only at concentrations higher than 100 mu M. We were also able to show that SW480 cells presented a higher level of the modified DNA bases 8-oxo-7,8-dihydro-2`-deoxyguanosine and 1,N(2)-etheno-2`-deoxyguanosine compared to the control. Furthermore, incubations with Hb led to an increase in intracellular iron levels, and this high level of iron correlated with DNA oxidation, as measured as EndoIII- and Fpg-sensitive sites. Thus, Hb from either red meat or bowel bleeding could act as an enhancer of fatty acid hydroperoxide genotoxicity, which contributes to the accumulation of DNA lesions in colon cancer cells. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Aminoacetone (AA), triose phosphates, and acetone are putative endogenous sources of potentially cytotoxic and genotoxic methylglyoxal (MG), which has been reported to be augmented in the plasma of diabetic patients. In these patients, accumulation of MG derived from aminoacetone, a threonine and glycine catabolite, is inferred from the observed concomitant endothelial overexpression of circulating semicarbazide-sensitive amine oxidases. These copper-dependent enzymes catalyze the oxidation of primary amines, such as AA and methylamine, by molecular oxygen, to the corresponding aldehydes, NH4+ ion and H2O2. We recently reported that AA aerobic oxidation to MG also takes place immediately upon addition of catalytic amounts of copper and iron ions. Taking into account that (i) MG and H2O2 are reportedly cytotoxic to insulin-producing cell lineages such as RINm5f and that (ii) the metal-catalyzed oxidation of AA is propagated by O-2(center dot-) radical anion, we decided to investigate the possible pro-oxidant action of AA on these cells taken here as a reliable model system for pancreatic beta-cells. Indeed, we show that AA (0.10-5.0 mM) administration to RINm5f cultures induces cell death. Ferrous (50-300 mu M) and Fe3+ ion (100 mu M) addition to the cell cultures had no effect, whereas Cu2+ (5.0-100 mu M) significantly increased cell death. Supplementation of the AA- and Cu2+-containing culture medium with antioxidants, such as catalase (5.0 mu M), superoxide dismutase (SOD, 50 U/mL), and N-acetylcysteine (NAC, 5.0 mM) led to partial protection. mRNA expression of MnSOD, CuZnSOD, glutathione peroxidase, and glutathione reductase, but not of catalase, is higher in cells treated with AA (0.50-1.0 mM) plus Cu2+ ions (10-50 mu M) relative to control cultures. This may imply higher activity of antioxidant enzymes C, in RINm5f AA-treated cells. In addition, we have found that AA (0.50-1.0 mM) Plus Cu2+ (100 mu M) (i) increase RINm5f cytosolic calcium; (ii) promote DNA fragmentation; and (iii) increase the pro-apoptotic (Bax)/antiapoptotic (Bcl-2) ratio at the level of mRNA expression. In conclusion, although both normal and pathological concentrations of AA are probably much lower than those used here, it is tempting to propose that excess AA in diabetic patients may drive oxidative damage and eventually the death of pancreatic beta-cells.
Resumo:
Organotellurium(]V) compounds have been reported to have multiple biological activities including cysteine protease-inhibitory activity, mainly cathepsin B. As cathepsin B is a highly predictive indicator for prognosis and diagnosis of cancer, a possible antitumor potential for these new compounds is expected. In this work, it was investigated the effectiveness of organotellurium(IV) RT-04 to produce lethal effects in the human promyelocytic leukaemia cell line HL60. Using the MTT tetrazolium reduction test, and trypan blue exclusion assay, the IC50 for the compound after 24 h incubation was 6.8 and 0.35 mu M, respectively. Moreover, the compound was found to trigger apoptosis in HL60 cells, inducing DNA fragmentation and caspase-3, -6, and -9 activations. The apoptsosis-induced by RT-04 is probably related to the diminished Bcl-2 expression, observed by RT-PCR, in HL60-treated cells. In vivo studies demonstrated that the RT-04 treatment (2.76 mg/kg given for three consecutive days) produces no significant toxic effects for bone marrow and spleen CFU-GM. However, higher doses (5.0 and 10 mg/kg) produced a dose-dependent reduction in the number of CFU-GM of RT-04-treated mice. These results suggest that RT-04 is able to induce apoptosis in HL60 cells by Bcl-2 expression down-modulation. Further studies are necessary to better clarify the effects of this compound on bone marrow normal cells. (C) 2008 Elsevier Ltd. All rights reserved.