19 resultados para Crystallographic Structure

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Xanthomonas axonopodis pv. citri (Xac or X citri), the modA gene codes for a periplasmic protein (ModA) that is capable of binding molybdate and tungstate as part of the ABC-type transporter required for the uptake of micronutrients. In this study, we report the crystallographic structure of the Xac ModA protein with bound molybdate. The Xac ModA structure is similar to orthologs with known three-dimensional structures and consists of two nearly symmetrical domains separated by a hinge region where the oxyanion-binding site lies. Phylogenetic analysis of different ModA orthologs based on sequence alignments revealed three groups of molybdate-binding proteins: bacterial phytopathogens, enterobacteria and soil bacteria. Even though the ModA orthologs are segregated into different groups, the ligand-binding hydrogen bonds are mostly conserved, except for Archaeglobus fulgidus ModA. A detailed discussion of hydrophobic interactions in the active site is presented and two new residues, Ala(38) and Ser(151), are shown to be part of the ligand-binding pocket. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphofructokinase-1 and -2 (Pfk-1 and Pfk-2, respectively) from Escherichia coli belong to different homologous superfamilies. However, in spite of the lack of a common ancestor, they share the ability to catalyze the same reaction and are inhibited by the substrate MgATP. Pfk-2, an ATP-dependent 6-phosphofructokinase member of the ribokinase-like superfamily, is a homodimer of 66 kDa subunits whose oligomerization state is necessary for catalysis and stability. The presence of MgATP favors the tetrameric form of the enzyme. In this work, we describe the structure of Pfk-2 in its inhibited tetrameric form, with each subunit bound to two ATP molecules and two Mg ions. The present structure indicates that substrate inhibition occurs due to the sequential binding of two MgATP molecules per subunit, the first at the usual site occupied by the nucleotide in homologous enzymes and the second at the allosteric site, making a number of direct and Mg-mediated interactions with the first. Two configurations are observed for the second MgATP, one of which involves interactions with Tyr23 from the adjacent subunit in the dimer and the other making an unusual non-Watson-Crick base pairing with the adenine in the substrate ATP. The oligomeric state observed in the crystal is tetrameric, and some of the structural elements involved in the binding of the Substrate and allosteric ATPs are also participating in the dimer-dimer interface. This structure also provides the grounds to compare analogous features of the nonhomologous phosphofructokinases from E. coli. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel inhibitor of Schistosoma PNP was identified using an ""in silico"" approach allied to enzyme inhibition assays. The compound has a monocyclic structure which has not been previously described for PNP inhibitors The crystallographic structure of the complex was determined and used to elucidate the binding mode within the active site Furthermore, the predicted pose was very similar to that determined crystallographically, validating the methodology The compound Sm_VS1, despite its low molecular weight, possesses an IC(50) of 1 3 mu M, surprisingly low when compared with purine analogues This is presumably due to the formation of eight hydrogen bonds with key residues in the active site E203, N245 and T244. The results of this study highlight the importance of the use of multiple conformations for the target during virtual screening. Indeed the Sm_VS1 compound was only identified after flipping the N245 side chain It is expected that the structure will be of use in the development of new highly active non-purine based compounds against the Sclustosoma enzyme. (c) 2010 Elsevier B V. All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen`s antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thimet oligopeptidase (EC 3.4.24.15, TOP) is a metallo-oligopeptidase that participates in the intracellular metabolism of peptides. Predictions based on structurally analogous peptidases (Dcp and ACE-2) show that TOP can present a hinge-bend movement during substrate hydrolysis, what brings some residues closer to the substrate. One of these residues that in TOP crystallographic structure are far from the catalytic residues, but, moves toward the substrate considering this possible structural reorganization is His(600). In the present work, the role of His(600) of TOP was investigated by site-directed mutagenesis. TOP H600A mutant was characterized through analysis of S(1) and S(1)`, specificity, pH-activity profile and inhibition by JA-2. Results showed that TOP His(600) residue makes important interactions with the substrate, supporting the prediction that His(600) moves toward the substrate due to a hinge movement similar to the Dcp and ACE-2. Furthermore, the mutation H600A affected both K(m) and k(cat), showing the importance of His(600) for both substrate binding and/or product release from active site. Changes in the pH-profile may indicate also the participation of His(600) in TOP catalysis, transferring a proton to the newly generated NH(2)-terminus or helping Tyr(605) and/or Tyr(612) in the intermediate oxyanion stabilization. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms of nucleation and growth and the solid-to-liquid transition of metallic nanoclusters embedded in sodium borate glass were recently studied in situ via small-angle X-ray scattering (SAXS) and wide-an-le X-ray scattering (WAXS). SAXS results indicate that, under isothermal annealing conditions, the formation and growth of Bi or Ag nanoclusters embedded in sodium borate glass occurs through two successive stages after a short incubation period. The first stage is characterized by the nucleation and growth of spherical metal clusters promoted by the diffusion of Bi or Ag atoms through the initially supersaturated glass phase. The second stage is named the coarsening stage and occurs when the (Bi- or Ag-) doping level of the vitreous matrix is close to the equilibrium value. The experimental results demonstrated that, at advanced stages of the growth process, the time dependence of the average radius and density number of the clusters is in agreement with the classical Lifshitz-Slyozov-Waoner (LSW) theory. However, the radius distribution function is better described by a lognormal function than by the function derived from the theoretical LSW model. From the results of SAXS measurements at different temperatures, the activation energies for the diffusion of Ag and Bi through sodium borate glass were determined. In addition, via combination of the results of simultaneous WAXS and SAXS measurements at different temperatures, the crystallographic structure and the dependence of melting temperature T(m) on crystal radius R of Bi nanocrystals were established. The experimental results indicate that T(m) is a linear and decreasing function of nanocrystal reciprocal radius 1/R, in agreement with the Couchman and Jesser theoretical model. Finally, a weak contraction in the lattice parameters of Bi nanocrystals with respect to bulk crystals was established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photoluminescence of anodically prepared ZrO(2) films was investigated. Morphological and microstructural analyses reveal an oxide surface covered by a high distribution of blisters and the major crystallographic structure is the monoclinic phase with small quantities of tetragonal phase. The photoluminescence reveals a broad emission band in the range between 350 and 650 nm. It was proposed that the photoluminescence mechanism is originated from the emission of a recombination center related to defects (oxygen vacancies) formed during Zr anodization. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 angstrom. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K(0.5) for fructose-6-P and a decrease in the apparent k(cat) as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (n(H) of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to address the activation process of a high temperature shift (HTS) catalyst, composed of Fe2O3/Cr2O3/CuO, by analyzing it before activation (HTS-V) and after activation (HTS-A) using complementary characterization techniques. The textural and morphological characterizations were done by transmission electron rnicroscopy (TEM) and nitrogen physisorption at 77 K; crystallographic structure was confirmed by X-ray diffraction (XRD); electronic structure was analyzed by X-ray absorption spectroscopy (XAS) and the chemical composition of the catalyst`s surface was obtained by X-ray photoelectron spectroscopy (XPS). The investigation pointed out that the HTS-V catalyst presents good textural and morphological properties, which are not deeply affected by the activation process (sample HTS-A). The iron oxide phase in the HTS-V catalyst is hematite whereas in HTS-A catalyst is magnetite with Fe2+/Fe3+ ratio close to the expected value (0.5). For both samples, the Cr ions seem to be incorporated in the iron oxide lattice with higher concentration at particle surface. In the HTS-V catalyst, the Cu ions have oxidation number II and occupy in average distorted octahedral sites; after the activation, the Cu ions are partially reduced, suggesting that the reduction of the Cu species is complex. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (I)FT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetic and crystallographic studies on the formation of the complex between iodoacetate and the enzyme glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi were conducted in order to investigate the mechanistic and structural basis underlying enzyme inactivation. The crystallographic complex reveal important structural features useful for the design of novel inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe here a procedure to bridge the gap in the field of calixarene physicochemistry between solid-state atomic-resolution structural information and the liquid-state low-resolution thermodynamics and spectroscopic data. We use MD simulations to study the kinetics and energetics involved in the complexation of lower rim calix[4]arene derivatives (L), containing bidentate ester (1) and ketone (2) pendant groups, with acetonitrile molecule (MeCN) and Cd2+ and Pb2+ ions (M2+) in acetonitrile solution. On one hand, we found that the prior inclusion of MeCN into the calix to form a L(MeCN) adduct has only a weak effect in preorganizing the hydrophilic cavity toward metal ion binding. On the other hand, the strong ion-hydrophilic cavity interaction produces a wide open calix which enhances the binding of one MeCN molecule (allosteric effect) to stabilize the whole (M2+)1(MeCN) bifunctional complex. We reach two major conclusions: (i) the MD results for the (M2+)1(MeCN) binding are in close agreement with the ""endo"", fully encapsulated, metal complex found by X-ray diffraction and in vacuo MD calculations, and (ii) the MD structure for the more flexible 2 ligand, however, differs from the also endo solid-state molecule. In fact, it shows strong solvation effects at the calixarene lower bore by competing MeCN molecules that share the metal coordination sphere with the four C=O oxygens of an ""exo"" (M2+)2(MeCN) complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five new complexes of general formula: [Ni(RSO(2)N=CS(2))(dppe)], where R = C(6)H(5) (1), 4-ClC(6)H(4) (2), 4-BrC(6)H(4) (3), 4-IC(6)H(4) (4) and dppe = 1,2-bis(diphenylphosphino) ethane and [Ni(4-IC(6)H(4)SO(2)N=CS(2))(PPh(3))(2)] (5), where PPh3 = triphenylphosphine, were obtained in crystalline form by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate K(2)(RSO(2)N=CS(2)) and dppe or PPh(3) with nickel(II) chloride in ethanol/water. The elemental analyses and the IR, (1)H NMR, (13)C NMR and (31)P NMR spectra are consistent with the formation of the square planar nickel(II) complexes with mixed ligands. All complexes were also characterized by X-ray diffraction techniques and present a distorted cis-NiS(2)P(2) square-planar configuration around the Ni atom. Quantum chemical calculations reproduced the crystallographic structures and are in accord with the spectroscopic data. Rare C-H center dot center dot center dot Ni intramolecular short contact interactions were observed in the complexes 1-5. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.