59 resultados para Count data models
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
Resumo:
We introduce in this paper a new class of discrete generalized nonlinear models to extend the binomial, Poisson and negative binomial models to cope with count data. This class of models includes some important models such as log-nonlinear models, logit, probit and negative binomial nonlinear models, generalized Poisson and generalized negative binomial regression models, among other models, which enables the fitting of a wide range of models to count data. We derive an iterative process for fitting these models by maximum likelihood and discuss inference on the parameters. The usefulness of the new class of models is illustrated with an application to a real data set. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This enhancement improved performance from 80 to 91% for redundant GDW schemas.
Resumo:
The humpback whale (Megaptera novaeangliae) population that uses Abrolhos Bank, off the east coast of Brazil as a breeding ground is increasing. To describe temporal changes in the relative abundance of humpback whales around Abrolhos, seven years (1998-2004) of whale count data were collected during July through to November. During one-hour-scans, observers determined group size within 9.3 km (5 n.m.) of a land-based observing station. A total Of 930 scans, comprising 7996 sightings of adults and 2044 calves were analysed using generalized linear models that included variables for time of day, day of the season, years and two-way interactions as possible predictors. The pattern observed was the gradual build-up and decline in whale counts within seasons. Patterns and peaks of adult and calf counts varied among years. Although fluctuation was observed, there was generally an increasing trend in adult counts among years. Calf counts increased only in 2004. These fluctuations may have been caused by some environmental conditions in humpback whales` summering grounds and also by changes in spatial-temporal concentrations in Abrolhos Bank. The general pattern observed within the study area mirrored what was observed in the whole Abrolhos Bank. Knowledge of the consistency with which humpback whales use this important nursing area should prove beneficial for designing future monitoring programmes especially related to whale watching activities around Abrolhos Archipelago.
Resumo:
We review several asymmetrical links for binary regression models and present a unified approach for two skew-probit links proposed in the literature. Moreover, under skew-probit link, conditions for the existence of the ML estimators and the posterior distribution under improper priors are established. The framework proposed here considers two sets of latent variables which are helpful to implement the Bayesian MCMC approach. A simulation study to criteria for models comparison is conducted and two applications are made. Using different Bayesian criteria we show that, for these data sets, the skew-probit links are better than alternative links proposed in the literature.
Resumo:
In this article, we introduce a semi-parametric Bayesian approach based on Dirichlet process priors for the discrete calibration problem in binomial regression models. An interesting topic is the dosimetry problem related to the dose-response model. A hierarchical formulation is provided so that a Markov chain Monte Carlo approach is developed. The methodology is applied to simulated and real data.
Resumo:
We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.
Resumo:
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H alpha, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman & O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10(-4) M(circle dot) is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Joint generalized linear models and double generalized linear models (DGLMs) were designed to model outcomes for which the variability can be explained using factors and/or covariates. When such factors operate, the usual normal regression models, which inherently exhibit constant variance, will under-represent variation in the data and hence may lead to erroneous inferences. For count and proportion data, such noise factors can generate a so-called overdispersion effect, and the use of binomial and Poisson models underestimates the variability and, consequently, incorrectly indicate significant effects. In this manuscript, we propose a DGLM from a Bayesian perspective, focusing on the case of proportion data, where the overdispersion can be modeled using a random effect that depends on some noise factors. The posterior joint density function was sampled using Monte Carlo Markov Chain algorithms, allowing inferences over the model parameters. An application to a data set on apple tissue culture is presented, for which it is shown that the Bayesian approach is quite feasible, even when limited prior information is available, thereby generating valuable insight for the researcher about its experimental results.
Resumo:
Phylogenetic analyses of chloroplast DNA sequences, morphology, and combined data have provided consistent support for many of the major branches within the angiosperm, clade Dipsacales. Here we use sequences from three mitochondrial loci to test the existing broad scale phylogeny and in an attempt to resolve several relationships that have remained uncertain. Parsimony, maximum likelihood, and Bayesian analyses of a combined mitochondrial data set recover trees broadly consistent with previous studies, although resolution and support are lower than in the largest chloroplast analyses. Combining chloroplast and mitochondrial data results in a generally well-resolved and very strongly supported topology but the previously recognized problem areas remain. To investigate why these relationships have been difficult to resolve we conducted a series of experiments using different data partitions and heterogeneous substitution models. Usually more complex modeling schemes are favored regardless of the partitions recognized but model choice had little effect on topology or support values. In contrast there are consistent but weakly supported differences in the topologies recovered from coding and non-coding matrices. These conflicts directly correspond to relationships that were poorly resolved in analyses of the full combined chloroplast-mitochondrial data set. We suggest incongruent signal has contributed to our inability to confidently resolve these problem areas. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we develop a flexible cure rate survival model by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. Next, we discuss the maximum likelihood estimation of the parameters of this cure rate survival model. Finally, we illustrate the usefulness of this model by applying it to a real cutaneous melanoma data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In survival analysis applications, the failure rate function may frequently present a unimodal shape. In such case, the log-normal or log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the Burr XII distribution is proposed for modeling data with a unimodal failure rate function as an alternative to the log-logistic regression model. Assuming censored data, we consider a classic analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the log-logistic and log-Burr XII regression models. Besides, we use sensitivity analysis to detect influential or outlying observations, and residual analysis is used to check the assumptions in the model. Finally, we analyze a real data set under log-Buff XII regression models. (C) 2008 Published by Elsevier B.V.
Resumo:
The aim of this study was to comparatively assess dental arch width, in the canine and molar regions, by means of direct measurements from plaster models, photocopies and digitized images of the models. The sample consisted of 130 pairs of plaster models, photocopies and digitized images of the models of white patients (n = 65), both genders, with Class I and Class II Division 1 malocclusions, treated by standard Edgewise mechanics and extraction of the four first premolars. Maxillary and mandibular intercanine and intermolar widths were measured by a calibrated examiner, prior to and after orthodontic treatment, using the three modes of reproduction of the dental arches. Dispersion of the data relative to pre- and posttreatment intra-arch linear measurements (mm) was represented as box plots. The three measuring methods were compared by one-way ANOVA for repeated measurements (α = 0.05). Initial / final mean values varied as follows: 33.94 to 34.29 mm / 34.49 to 34.66 mm (maxillary intercanine width); 26.23 to 26.26 mm / 26.77 to 26.84 mm (mandibular intercanine width); 49.55 to 49.66 mm / 47.28 to 47.45 mm (maxillary intermolar width) and 43.28 to 43.41 mm / 40.29 to 40.46 mm (mandibular intermolar width). There were no statistically significant differences between mean dental arch widths estimated by the three studied methods, prior to and after orthodontic treatment. It may be concluded that photocopies and digitized images of the plaster models provided reliable reproductions of the dental arches for obtaining transversal intra-arch measurements.