52 resultados para Compensation Sensorielle
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.
Resumo:
Despite the fact that the majority of the catalytic electro-oxidation of small organic molecules presents oscillatory kinetics under certain conditions, there are few systematic studies concerning the influence of experimental parameters on the oscillatory dynamics. Of the studies available, most are devoted to C1 molecules and just some scattered data are available for C2 molecules. We present in this work a comprehensive study of the electro-oxidation of ethylene glycol on polycrystalline platinum surfaces and in alkaline media. The system was studied by means of electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry, and the impact of parameters such as applied current, ethylene glycol concentration, and temperature were investigated. As in the case of other parent systems, the instabilities in this system were associated with a hidden negative differential resistance, as identified by impedance data. Very rich and robust dynamics were observed, including the presence of harmonic and mixed mode oscillations and chaotic states, in some parameter region. Oscillation frequencies of about 16 Hz characterized the fastest oscillations ever reported for the electro-oxidation of small organic molecules. Those high frequencies were strongly influenced by the electrolyte pH and far less affected by the EG concentration. The system was regularly dependent on temperature under voltammetric conditions but rather independent within the oscillatory regime.
Resumo:
This letter presents an extension of an existing ground distance relay algorithm to include phase distance relays. The algorithm uses a fault resistance estimation process in the phase domain, improving efficiency in the distance protection process. The results show that the algorithm is suitable for online applications, and that it has an independent performance from the fault resistance magnitude, the fault location, and the line asymmetry.
Resumo:
Compliant mechanisms can achieve a specified motion as a mechanism without relying on the use of joints and pins. They have broad application in precision mechanical devices and Micro-Electro Mechanical Systems (MEMS) but may lose accuracy and produce undesirable displacements when subjected to temperature changes. These undesirable effects can be reduced by using sensors in combination with control techniques and/or by applying special design techniques to reduce such undesirable effects at the design stage, a process generally termed ""design for precision"". This paper describes a design for precision method based on a topology optimization method (TOM) for compliant mechanisms that includes thermal compensation features. The optimization problem emphasizes actuator accuracy and it is formulated to yield optimal compliant mechanism configurations that maximize the desired output displacement when a force is applied, while minimizing undesirable thermal effects. To demonstrate the effectiveness of the method, two-dimensional compliant mechanisms are designed considering thermal compensation, and their performance is compared with compliant mechanisms designs that do not consider thermal compensation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary patterns. Here, we investigate how the performance of this network on pattern recognition task is altered when neurons are removed and the weights of the synapses corresponding to these deleted neurons are divided among the remaining synapses. Five distinct ways of distributing such weights are evaluated. We speculate how this numerical work about synaptic compensation may help to guide experimental studies on memory rehabilitation interventions.
Resumo:
We employ comprehensive linked employer-employee data for Brazil to analyze wage determinants and compare results to Abowd et al. (2001) for French and U.S. manufacturing. While returns to human capita in Brazilian manufacturing exceed those of the other countries, occupation and gender differentials are similar. The worker-characteristics component accounts for much of the greater wage inequality in Brazil, but the establishment-fixed component has scant explanatory power. Thus, firm-or industry-level factors offer little scope for explaining the differences in wage inequality. Brazil`s wage structure resembles that of France, a country with some similarity in labor market institutions.
Resumo:
PURPOSE: To evaluate the impact of atypical retardation patterns (ARP) on detection of progressive retinal nerve fiber layer (RNFL) loss using scanning laser polarimetry with variable corneal compensation (VCC). DESIGN: Observational cohort study. METHODS: The study included 377 eyes of 221 patients with a median follow-up of 4.0 years. Images were obtained annually with the GDx VCC (Carl Zeiss Med, itec Inc, Dublin, California, USA), along with optic disc stereophotographs and standard automated perimetry (SAP) visual fields. Progression was determined by the Guided Progression Analysis software for SAP and by masked assessment of stereophotographs by expert graders. The typical scan score (TSS) was used to quantify the presence of ARPs on GDx VCC images. Random coefficients models were used to evaluate the relationship between ARP and RNFL thickness measurements over time. RESULTS: Thirty-eight eyes (10%) showed progression over time on visual fields, stereophotographs, or both. Changes in TSS scores from baseline were significantly associated with changes in RNFL thickness measurements in both progressing and nonprogressing eyes. Each I unit increase in TSS score was associated with a 0.19-mu m decrease in RNFL thickness measurement (P < .001) over time. CONCLUSIONS: ARPs had a significant effect on detection of progressive RNFL loss with the GDx VCC. Eyes with large amounts of atypical patterns, great fluctuations on these patterns over time, or both may show changes in measurements that can appear falsely as glaucomatous progression or can mask true changes in the RNFL. (Am J Ophthalmol 2009;148:155-163. (C) 2009 by Elsevier Inc. All rights reserved.)
Resumo:
PURPOSE: To compare the abilities of scanning laser polarimetry (SLP) with enhanced corneal compensation (ECC) and variable corneal compensation (VCC) modes for detection of retinal nerve fiber layer (RNFL) loss in eyes with band atrophy (BA) of the optic nerve. DESIGN. Cross-sectional study. METHODS: Thirty-seven eyes from 37 patients with BA and temporal visual field defect from chiasmal compression and 40 eyes from 40 healthy subjects were studied. Subjects underwent standard automated perimetry and RNFL measurements using an SLP device equipped with VCC and ECC. Receiver operating characteristic (ROC) curves were calculated for each parameter. Pearson correlation coefficients were obtained to evaluate the relationship between RNFL thickness parameters and severity of visual field loss, as assessed by the temporal mean defect. RESULTS: All RNFL thickness parameters were significantly lower in eyes with BA compared with normal eyes with both compensation modes. However, no statistically significant differences were observed in the areas under the ROC curves for the different parameters between GDx VCC and ECC (Carl Zeiss Meditec, Inc, Dublin, California, USA). Structure-function relationships also were similar for both compensation modes. CONCLUSIONS: No significant differences were found between the diagnostic accuracy of GDx ECC and that of VCC for detection of BA of the optic nerve. The use of GDx ECC does not seem to provide a better evaluation of RNFL loss on the temporal and nasal sectors of the peripapillary retina in subjects with BA of the optic nerve.
Resumo:
Biological rhythms are regulated by homeostatic mechanisms that assure that physiological clocks function reliably independent of temperature changes in the environment. Temperature compensation, the independence of the oscillatory period on temperature, is known to play a central role in many biological rhythms, but it is rather rare in chemical oscillators. We study the influence of temperature on the oscillatory dynamics during the catalytic oxidation of formic acid on a polycrystalline platinum electrode. The experiments are performed at five temperatures from 5 to 25 degrees C, and the oscillations are studied under galvanostatic control. Under oscillatory conditions, only non-Arrhenius behavior is observed. Overcompensation with temperature coefficient (q(10), defined as the ratio between the rate constants at temperature T + 10 degrees C and at T) < I is found in most cases, except that temperature compensation with q(10) approximate to I predominates at high applied currents. The behavior of the period and the amplitude result from a complex interplay between temperature and applied current or, equivalently, the distance from thermodynamic equilibrium. High, positive apparent activation energies were obtained under voltammetric, nonoscillatory conditions, which implies that the non-Arrhenius behavior observed under oscillatory conditions results from the interplay among reaction steps rather than, from a weak temperature dependence of the individual steps.
Resumo:
INTRODUÇÃO: a responsabilidade do cirurgião-dentista pode ser entendida como obrigações de ordem penal, civil, ética e administrativa, às quais está sujeito no exercício de sua atividade. Assim, se comprovado um resultado lesivo ao paciente - por imprudência, imperícia ou negligência -, o cirurgião-dentista estará sujeito às penalidades previstas no Código Civil, sendo obrigado a satisfazer o dano e indenizar segundo a consequência provocada. Em processos cíveis, as partes poderão contratar um assistente técnico para fornecer, aos respectivos advogados, conhecimentos técnicos e científicos inerentes ao tema. OBJETIVO: informar sobre a importância da atuação de assistentes técnicos em processos cíveis, propiciando às partes uma maior compreensão dos aspectos técnicos, éticos e legais. CONCLUSÃO: há a necessidade de um maior conhecimento, por parte dos profissionais em Odontologia, sobre os aspectos éticos e legais que norteiam a profissão.
Resumo:
A cor é um atributo perceptual que nos permite identificar e localizar padrões ambientais de mesmo brilho e constitui uma dimensão adicional na identificação de objetos, além da detecção de inúmeros outros atributos dos objetos em sua relação com a cena visual, como luminância, contraste, forma, movimento, textura, profundidade. Decorre daí a sua importância fundamental nas atividades desempenhadas pelos animais e pelos seres humanos em sua interação com o ambiente. A psicofísica visual preocupa-se com o estudo quantitativo da relação entre eventos físicos de estimulação sensorial e a resposta comportamental resultante desta estimulação, fornecendo dessa maneira meios de avaliar aspectos da visão humana, como a visão de cores. Este artigo tem o objetivo de mostrar diversas técnicas eficientes na avaliação da visão cromática humana através de métodos psicofísicos adaptativos.
Resumo:
A Psicofísica aplicada à Clínica com seres humanos pode prover ferramentas alternativas que auxiliem o acesso objetivo e quantificável a condições internas do paciente, que só poderiam ser obtidas, de outra forma, através de seus relatos e descrições. Um exemplo dessa parceria e aplicação da Psicofísica é o aparelho comercial C-Quant (Oculus Optikgeräte, Alemanha), cujo método psicofísico de acesso ao valor de dispersão de luz na retina foi desenvolvido pelo grupo de pesquisadores holandeses liderados pelo Prof. Dr. Thomas van den Berg, do Netherland Institute of Neuroscience (NIN). O acesso ao valor de dispersão de luz na retina é útil para auxiliar no diagnóstico de várias doenças oculares, como catarata. Neste artigo o método psicofísico presente no aparelho (Comparação da Compensação) é descrito.
Resumo:
Due to the development of nanoscience, the interest in electrochromism has increased and new assemblies of electrochromic materials at nanoscale leading to higher efficiencies and chromatic contrasts, low switching times and the possibility of color tuning have been developed. These advantages are reached due to the extensive surface area found in nanomaterials and the large amount of organic electrochromic molecules that can be easily attached onto inorganic nanoparticles, as TiO2 or SiO2. Moreover, the direct contact between electrolyte and nanomaterials produces high ionic transfer rates, leading to fast charge compensation, which is essential for high performance electrochromic electrodes. Recently, the layer-by-layer technique was presented as an interesting way to produce different architectures by the combination of both electrochromic nanoparticles and polymers. The present paper shows some of the newest insights into nanochromic science.
Resumo:
The structural engineering community in Brazil faces new challenges with the recent occurrence of high intensity tornados. Satellite surveillance data shows that the area covering the south-east of Brazil, Uruguay and some of Argentina is one of the world most tornado-prone areas, second only to the infamous tornado alley in central United States. The design of structures subject to tornado winds is a typical example of decision making in the presence of uncertainty. Structural design involves finding a good balance between the competing goals of safety and economy. This paper presents a methodology to find the optimum balance between these goals in the presence of uncertainty. In this paper, reliability-based risk optimization is used to find the optimal safety coefficient that minimizes the total expected cost of a steel frame communications tower, subject to extreme storm and tornado wind loads. The technique is not new, but it is applied to a practical problem of increasing interest to Brazilian structural engineers. The problem is formulated in the partial safety factor format used in current design codes, with all additional partial factor introduced to serve as optimization variable. The expected cost of failure (or risk) is defined as the product of a. limit state exceedance probability by a limit state exceedance cost. These costs include costs of repairing, rebuilding, and paying compensation for injury and loss of life. The total expected failure cost is the sum of individual expected costs over all failure modes. The steel frame communications, tower subject of this study has become very common in Brazil due to increasing mobile phone coverage. The study shows that optimum reliability is strongly dependent on the cost (or consequences) of failure. Since failure consequences depend oil actual tower location, it turn,,; out that different optimum designs should be used in different locations. Failure consequences are also different for the different parties involved in the design, construction and operation of the tower. Hence, it is important that risk is well understood by the parties involved, so that proper contracts call be made. The investigation shows that when non-structural terms dominate design costs (e.g, in residential or office buildings) it is not too costly to over-design; this observation is in agreement with the observed practice for non-optimized structural systems. In this situation, is much easier to loose money by under-design. When by under-design. When structural material cost is a significant part of design cost (e.g. concrete dam or bridge), one is likely to lose significantmoney by over-design. In this situation, a cost-risk-benefit optimization analysis is highly recommended. Finally, the study also shows that under time-varying loads like tornados, the optimum reliability is strongly dependent on the selected design life.
Resumo:
In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems. (C) 2009 Optical Society of America