13 resultados para Comparative Genomic Hybridization,
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.
Resumo:
Objective: To investigate whether submicroscopic copy number variants (CNVs) on the X chromosome can be identified in women with primary ovarian insufficiency (POI), defined as spontaneous secondary amenorrhea before 40 years of age accompanied by follicle-stimulating hormone levels above 40 IU/L on at least two occasions. Design: Analysis of intensity data of single nucleotide polymorphism (SNP) probes generated by genomewide Illumina 370k CNV BeadChips, followed by the validation of identified loci using a custom designed ultra-high-density comparative genomic hybridization array containing 48,325 probes evenly distributed over the X chromosome. Setting: Multicenter genetic cohort study in the Netherlands. Patient(s): 108 Dutch Caucasian women with POI, 97 of whom passed quality control, who had a normal karyogram and absent fragile X premutation, and 235 healthy Dutch Caucasian women as controls. Intervention(s): None. Main Outcome Measure(s): Amount and locus of X chromosomal microdeletions or duplications. Result(s): Intensity differences between SNP probes identify microdeletions and duplications. The initial analysis identified an overrepresentation of deletions in POI patients. Moreover, CNVs in two genes on the Xq21.3 locus (i.e., PCDH11X and TGIF2LX) were statistically significantly associated with the POI phenotype. Mean size of identified CNVs was 262 kb. However, in the validation study the identified putative Xq21.3 deletions samples did not show deviations in intensities in consecutive probes. Conclusion(s): X chromosomal submicroscopic CNVs do not play a major role in Caucasian POI patients. We provide guidelines on how submicroscopic cytogenetic POI research should be conducted. (Fertil Steril (R) 2011;95:1584-8. (C) 2011 by American Society for Reproductive Medicine.)
Resumo:
Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype (similar to 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.
Resumo:
The cause of hearing impairment has not been elucidated in a large proportion of patients. We screened by 1-Mb array-based comparative genomic hybridization (aCGH) 29 individuals with syndromic hearing impairment whose clinical features were not typical of known disorders. Rare chromosomal copy number changes were detected in eight patients, four de novo imbalances and four inherited from a normal parent. The de novo alterations define candidate chromosome segments likely to harbor dosage-sensitive genes related to hearing impairment, namely 1q23.3-q25.2, 2q22q23, 6p25.3 and 11q13.2-q13.4. The rare imbalances also present in normal parents might be casually associated with hearing impairment, but its role as a predisposition gene remains a possibility. Our results show that syndromic deafness is frequently associated with chromosome microimbalances (14-27%), and the use of aCGH for defining disease etiology is recommended.
Resumo:
Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay. Each of the 30 patients analyzed showed a unique duplication varying in size from similar to 250 kb to similar to 2.6 Mb. Interestingly, in 77% of these non-recurrent duplications, the distal breakpoints grouped within a 215 kb genomic interval, located 47 kb telomeric to the MECP2 gene. The genomic architecture of this region contains both direct and inverted low-copy repeat (LCR) sequences; this same region undergoes polymorphic structural variation in the general population. Array CGH revealed complex rearrangements in eight patients; in six patients the duplication contained an embedded triplicated segment, and in the other two, stretches of non-duplicated sequences occurred within the duplicated region. Breakpoint junction sequencing was achieved in four duplications and identified an inversion in one patient, demonstrating further complexity. We propose that the presence of LCRs in the vicinity of the MECP2 gene may generate an unstable DNA structure that can induce DNA strand lesions, such as a collapsed fork, and facilitate a Fork Stalling and Template Switching event producing the complex rearrangements involving MECP2.
Resumo:
Background: Aplasia of the mullerian ducts leads to absence of the uterine corpus, uterine cervix, and upper (superior) vagina. Patients with mullerian aplasia (MA) often exhibit additional clinical features such as renal, vertebral and cardiac defects. A number of different syndromes have been associated with MA, and in most cases its aetiology remains poorly understood. Objective and methods: 14 syndromic patients with MA and 46, XX G-banded karyotype were screened for DNA copy number changes by similar to 1 Mb whole genome bacterial artificial chromosome (BAC) array based comparative genomic hybridisation (CGH). The detected alterations were validated by an independent method and further mapped by high resolution oligo-arrays. Results: Submicroscopic genomic imbalances affecting the 1q21.1, 17q12, 22q11.21, and Xq21.31 chromosome regions were detected in four probands. Presence of the alterations in the normal mother of one patient suggests incomplete penetrance and/or variable expressivity. Conclusion: 4 of the 14 patients (29%) were found to have cryptic genomic alterations. The imbalances on 22q11.21 support recent findings by us and others that alterations in this chromosome region may result in impairment of mullerian duct development. The remaining imbalances indicate involvement of previously unknown chromosome regions in MA, and point specifically to LHX1 and KLHL4 as candidate genes.
Resumo:
Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 angstrom resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Xylella fastidiosa is a xylem-restricted plant pathogen that causes a range of diseases in several and important crops. Through comparative genomic sequence analysis many genes were identified and, among them, several potentially involved in plant-pathogen interaction. The experimental determination of the primary sequence of some markedly expressed proteins for X fastidiosa and the comparison with the nucleic acids sequence of genome identified one of them as being SCJ21.16 (XFa0032) gene product. The comparative analysis of this protein against SWISSPROT database, in special, resulted in similarity with a-hydroxynitrile lyase enzyme (HNL) from Arabidopsis thaliana, causing interest for being one of the most abundant proteins both in the whole cell extract as well as in the extracellular protein fraction. It is known that HNL enzyme are involved in a process termed ""cyanogenesis"", which catalyzes the dissociation of alpha-hydroxinitrile into carbonyle and HCN when plant tissue is damaged. Although the complete genome sequences of X.fastidiosa are available and the cyanogenesis process is well known, the biological role of this protein in this organism is not yet functionally characterized. In this study we presented the cloning, expression, characterization of recombinant HNL from X fastidiosa, and its probable function in the cellular metabolism. The successful cloning and heterologous expression in Escherichia coli resulted in a satisfactory amount of the recombinant HNL expressed in a soluble, and active form giving convenient access to pure enzyme for biochemical and structural studies. Finally, our results confirmed that the product of the gene XFa0032 can be positively assigned as FAD-independent HNLs. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Molecular methods that permit the simultaneous detection and quantification of a large number of microbial species are currently employed in the evaluation of complex ecosystems. The checkerboard DNA-DNA hybridization technique enables the simultaneous identification of distinct bacterial. species in a large number of dental samples. The original technique employed digoxigenin-labeled whole genomic DNA probes which were detected by chemiluminescence. In this study, we present an alternative protocol for labeling and detecting whole genomic DNA probes in the Checkerboard DNA-DNA hybridization method. Whole genomic DNA was extracted from five bacterial species and labeled with fluorescein. The fluorescein labeled whole genomic DNA probes were hybridized against whole genomic DNA or subgingival plaque samples in a checkerboard hybridization format, followed by chemiluminescent detection. Our results reveal that fluorescein is a viable and adequate alternative labeling reagent to be employed in the checkerboard DNA-DNA hybridization technique. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The DNA Checkerboard method enables the simultaneous identification of distinct microorganisms in a large number of samples and employs up to 45 whole genomic DNA probes to gram-negative and gram-positive bacterial species present in subgingival biofilms. Collectively, they account for 55%-60% of the bacteria in subgingival biofilms. In this study, we present the DNA Checkerboard hybridization as an alternative method for the detection and quantitation of Candida species in oral cavities. Our results reveal that DNA Checkerboard is sensitive enough and constitutes a powerful and appropriate method for detecting and quantifying Candida species found in the oral cavity.
Resumo:
With the aim of determining the genetic basis of metabolic regulation in tomato fruit, we constructed a detailed physical map of genomic regions spanning previously described metabolic quantitative trait loci of a Solanum pennellii introgression line population. Two genomic libraries from S. pennellii were screened with 104 colocated markers from five selected genomic regions, and a total of 614 bacterial artificial chromosome (BAC)/cosmids were identified as seed clones. Integration of sequence data with the genetic and physical maps of Solanum lycopersicum facilitated the anchoring of 374 of these BAC/cosmid clones. The analysis of this information resulted in a genome-wide map of a nondomesticated plant species and covers 10% of the physical distance of the selected regions corresponding to approximately 1% of the wild tomato genome. Comparative analyses revealed that S. pennellii and domesticated tomato genomes can be considered as largely colinear. A total of 1,238,705 bp from both BAC/cosmid ends and nine large insert clones were sequenced, annotated, and functionally categorized. The sequence data allowed the evaluation of the level of polymorphism between the wild and cultivated tomato species. An exhaustive microsynteny analysis allowed us to estimate the divergence date of S. pennellii and S. lycopersicum at 2.7 million years ago. The combined results serve as a reference for comparative studies both at the macrosyntenic and microsyntenic levels. They also provide a valuable tool for fine-mapping of quantitative trait loci in tomato. Furthermore, they will contribute to a deeper understanding of the regulatory factors underpinning metabolism and hence defining crop chemical composition.
Resumo:
Chen LM, Zhao J, Musa-Aziz R, Pelletier MF, Drummond IA, Boron WF. Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel. Am J Physiol Regul Integr Comp Physiol 299: R1163-R1174, 2010. First published August 25, 2010; doi:10.1152/ajpregu.00319.2010.-The mammalian aquaporins AQP1, AQP4, and AQP5 have been shown to function not only as water channels but also as gas channels. Zebrafish have two genes encoding an AQP1 homologue, aqp1a and aqp1b. In the present study, we cloned the cDNA that encodes the zebrafish protein Aqp1a from the 72-h postfertilization (hpf) embryo of Danio rerio, as well as from the swim bladder of the adult. The deduced amino-acid sequence of aqp1a consists of 260 amino acids and is 59% identical to human AQP1. By analyzing the genomic DNA sequence, we identified four exons in the aqp1a gene. By in situ hybridization, aqp1a is expressed transiently in the developing vasculature and in erythrocytes from 16 to 48 h of development. Later, at 72 hpf, aqp1a is expressed in dermal ionocytes and in the swim bladder. Western blot analysis of adult tissues reveals that Aqp1a is most highly expressed in the eye and swim bladder. Xenopus oocytes expressing aqp1a have a channel-dependent (*) osmotic water permeability (P(f)*) that is indistinguishable from that of human AQP1. On the basis of the magnitude of the transient change in surface pH (Delta pHS) that were recorded as the oocytes were exposed to either CO(2) or NH(3), we conclude that zebrafish Aqp1a is permeable to both CO(2) and NH(3). The ratio (Delta pHS*)CO2/P(f)* is about half that of human AQP1, and the ratio (Delta pHS*)NH3/P(f)* is about one-quarter that of human AQP1. Thus, compared with human AQP1, zebrafish Aqp1a has about twice the selectivity for CO(2) over NH(3).
Resumo:
The genome sequence of Aedes aegypti was recently reported. A significant amount of Expressed Sequence Tags (ESTs) were sequenced to aid in the gene prediction process. In the present work we describe an integrated analysis of the genomic and EST data, focusing on genes with preferential expression in larvae (LG), adults (AG) and in both stages (SG). A total of 913 genes (5.4% of the transcript complement) are LG, including ion transporters and cuticle proteins that are important for ion homeostasis and defense. From a starting set of 245 genes encoding the trypsin domain, we identified 66 putative LG, AG, and SG trypsins by manual curation. Phylogenetic analyses showed that AG trypsins are divergent from their larval counterparts (LG), grouping with blood-induced trypsins from Anopheles gambiae and Simulium vittatum. These results support the hypothesis that blood-feeding arose only once, in the ancestral Culicomorpha. Peritrophins are proteins that interlock chitin fibrils to form the peritrophic membrane (PM) that compartmentalizes the food in the midgut. These proteins are recognized by having chitin-binding domains with 6 conserved Cys and may also present mucin-like domains (regions expected to be highly O-glycosylated). PM may be formed by a ring of cells (type 2, seen in Ae. aegypti larvae and Drosophila melanogaster) or by most midgut cells (type 1, found in Ae. aegypti adult and Tribolium castaneum). LG and D. melanogaster peritrophins have more complex domain structures than AG and T. castaneum peritrophins. Furthermore, mucin-like domains of peritrophins from T. castaneum (feeding on rough food) are lengthier than those of adult Ae. aegypti (blood-feeding). This suggests, for the first time, that type 1 and type 2 PM may have variable molecular architectures determined by different peritrophins and/or ancillary proteins, which may be partly modulated by diet.