4 resultados para Combinatorial Optimization
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the independent multi-plant, multi-period, and multi-item capacitated lot sizing problem where transfers between the plants are allowed. This is an NP-hard combinatorial optimization problem and few solution methods have been proposed to solve it. We develop a GRASP (Greedy Randomized Adaptive Search Procedure) heuristic as well as a path-relinking intensification procedure to find cost-effective solutions for this problem. In addition, the proposed heuristics is used to solve some instances of the capacitated lot sizing problem with parallel machines. The results of the computational tests show that the proposed heuristics outperform other heuristics previously described in the literature. The results are confirmed by statistical tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a(0) + a(1)x(1) + ... + a(n)x(n) subject to certain constraints to solve the problem of minimizing a rational function of the form (a(0) + a(1)x(1) + ... + a(n)x(n))/(b(0) + b(1)x(1) + ... + b(n)x(n)) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo`s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo`s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an alpha-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an alpha-approximation (1 1/alpha-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others.