14 resultados para Collagenase
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Culture conditions (pH, time, temperature, inoculum size, orbital agitation speed and substrate concentration) for an extracellular collagenase produced by Candida albicans URM3622 were studied using three experimental designs (one 2(6-2) fractionary factorial and two 2(3) full factorial). The analysis of the 2(6-2) fractionary design data indicated that agitation speed and substrate concentration had the most significant effect on collagenase production. Based on these results, two successive 2(3) full factorial design experiments were run in which the effects of substrate concentration, orbital agitation speed and pH were further studied. These two sets of experiments showed that all variables chosen were significant for the enzyme production, with the maximum collagenolytic activity of 6.8 +/- 0.4 U achieved at pH 7.0 with an orbital agitation speed of 160 rpm and 2% substrate concentration. Maximum collagenolytic activity was observed at pH 8.2 and 45 degrees C. The collagenase was stable within a pH range of 7.2-8.2 and over a temperature range of 28-45 degrees C. These results clearly indicate that C. albicans URM3622 is a potential resource for collagenase production and could be of interest for pharmaceutical, cosmetic and food industry. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Parvimonas micra are gram positive anaerobic cocci isolated from the oral cavity and frequently related to polymicrobial infections in humans. Despite reports about phenotypic differences, the genotypic variation of P. micra and its role in virulence are still not elucidated. The aim of this study was to determine the genotypic diversity of P. micra isolates obtained from the subgingival biofilm of subjects with different periodontal conditions and to correlate these findings with phenotypic traits. Three reference strains and 35 isolates of P. micro were genotyped by 16S rRNA PCR-RFLP and phenotypic traits such as collagenase production, elastolytic and hemolytic activities were evaluated. 16S rRNA PCR-RFLP showed that P. micra could be grouped into two main clusters: C1 and C2; cluster C1 harbored three genotypes (HG1259-like, HG1467-like and ICBM0583-like) while cluster C2 harbored two genotypes (ATC03270-like and ICBM036). A wide variability in collagenolytic activity intensities was observed among all isolates, while elastolytic activity was detected in only two isolates. There was an association between hemolytic activity in rabbit erythrocytes and cluster C2. There was an association between hemolytic activity in rabbit erythrocytes and cluster C1. Although these data suggest a possible association between P. micra genetic diversity and their pathogenic potential, further investigations are needed to confirm this hypothesis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The effects of verapamil modulating collagen biosynthesis have prompted us to study the role of this drug in cultured fibroblasts. In this article, we describe the effects of verapamil on fibroblast behaviour, with special emphasis to phenotypic modifications, reorganisation of actin filaments and secretion of MMP1. Human dermal fibroblasts treated with 50-mu M verapamil changed their normal spindle-shaped morphology to stellate. Treated cells showed discrete reorganisation of actin filaments, as revealed by fluorescein isothiocyanate (FITC)-phalloidin staining and confocal microscopy. We hypothesised that these effects would be associated to lower levels of cytosolic Ca(2+). Indeed, short time loading with calcium green confirmed that verapamil-treated fibroblasts exhibited lower intracellular calcium levels compared to controls. We also observed that verapamil increases the secretion of MMP1 in cultured fibroblasts, as demonstrated by zymography, specific substrate assays and immunoblot. The morphological alterations induced by verapamil are neither cytotoxic nor associated with other dramatic cytoskeleton alterations. Thus we may conclude that this drug enhances collagenase secretion and does not disrupt the major tracks necessary to deliver these enzymes in the extracellular space. The present results suggested that verapamil could be used at physiological levels to enhance collagen I breakdown, and maybe considered a potential candidate for intralesional therapy of wound healing and fibrocontractive diseases. (C) 2010 Elsevier Ltd and ISBI. All rights reserved.
Resumo:
Background: Periodontal disease shares risk factors with cardiovascular diseases and other systemic inflammatory diseases. The present study was designed to assess the circulating matrix metalloproteinases (MMPs) from chronic periodontal disease patients and, subsequently, after periodontal therapy. Methods: We compared the plasma concentrations of MMP-2. MMP-3, MMP-8, MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2, and total gelatinolytic activity in patients with periodontal disease (n =28) with those of control subjects (n = 22) before and 3 months after non-surgical periodontal therapy. Results: Higher plasma MMP-3, MMP-8, and MMP-9 concentrations were found in periodontal disease patients compared with healthy controls (all P<0.05), whereas MMP-2, TIMP-1, and TIMP-2 levels were not different. Treatment decreased plasma MMP-8 and MMP-9 concentrations by 35% and 39%, respectively (both P<0.02), while no changes were found in controls. MMP-2, MMP-3, TIMP-1, and TIMP-2 remained unaltered in both groups. Plasma gelatinolytic activity was higher in periodontal disease patients compared with controls (P<0.001) and decreased after periodontal therapy (P<0.05). Conclusions: This study showed increased circulating MMP-8 and MMP-9 levels and proteolytic activity in periodontal disease patients that decrease after periodontal therapy. The effects of periodontal therapy suggest that it may attenuate inflammatory chronic diseases. (C) 2009 Published by Elsevier B.V.
Resumo:
Femoral and acetabular loosening call be attributed different factors, but the Causes and mechanism of early failure are still obscure, The objective of this Study was to investigate the relationship between gene polymorphisms and early implant failure. Fifty-eight patients older than 50 years was recruited for analysis of MMP-1 promoter polymorphisms in early osseointegrated implant failure. The results showed in control group a frequency of 20.97% of 2G allele and 67.74% the genotype 1G/1G whereas, in the test group, a frequency of 83.33% of 2G allele and 66.66% the genotype 2G/2G. These results indicate that the polymorphism ill the promoter of the MMP-1 gene could be it risk factor for early implant failure of total hip arthroplasty.
Resumo:
Background. Subsequent ischaemic episodes may induce renal resistance. P21 is a cell cycle inhibitor that may be induced by oxygen-free radicals and may have a protective effect in ischaemic acute kidney injury (AKI). This study aimed at evaluating the role of oxidative stress and p21 on tubular resistance in a model of acquired resistance after renal ischaemia and in isolated renal tubules. Methods. Wistar rats were divided into: Group 1-sham; Group 2-sham operated and after 2 days submitted to 45-min ischaemia; and Group 3-45-min ischaemia followed after 2 days by a second 45-min ischaemia. Plasma urea was evaluated on Days 0, 2 and 4. Serum creatinine, creatinine clearance and oxidants (thiobarbituric acid-reactive substances) were determined 48 h after the second procedure (Day 4). Histology, immunohistochemistry for lymphocytes (CD3), macrophages (ED1), proliferation (PCNA) and apoptosis (TUNEL) were also evaluated. Rat proximal tubules (PTs) were isolated by collagenase digestion and Percoll gradient from control rats and rats previously subjected to 35 min of ischaemia. PTs were submitted to 15-min hypoxia followed by 45-min reoxygenation. Cell injury was assessed by lactate dehydrogenase release and hydroperoxide production (xylenol orange). Results. Ischaemia induced AKI in Group 2 and 3 rats. Subsequent ischaemia did not aggravate renal injury, demonstrating renal resistance (Group 3). Renal function recovery was similar in Group 2 and 3. Plasma and urine oxidants were similar among in Group 2 and 3. Histology disclosed acute tubular necrosis in Group 2 and 3. Lymphocyte infiltrates were similar among all groups whereas macrophages infiltrate was greater in Group 3. Cell proliferation was greater in Group 2 compared with Group 3. Apoptosis was similar in groups 2 and 3. The p21 expression was increased only in Group 3 whereas it was similar in groups 1 and 2. PTs from the ischaemia group were sensitive to hypoxia but resistant to reoxygenation injury which was followed by lower hydroperoxide production compared to control PT. Conclusion. Renal resistance induced by ischaemia was associated with cell mechanism mediators involving oxidative stress and increased p21 expression.
Resumo:
Objectives To characterize the properties of dentin matrix treated with two proanthocyanidin rich cross-linking agents and their effect on dentin bonded interfaces. Methods Sound human molars were cut into 0.5mm thick dentin slabs, demineralized and either treated with one of two cross-linking agents (grape seedGSE and cocoa seedCOE extracts) or left untreated. The modulus of elasticity of demineralized dentin was assessed after 10 or 60min and the swelling ratio after 60min treatment. Bacterial collagenase was also used to assess resistance to enzymatic degradation of samples subjected to ultimate tensile strength. The effect of GSE or COE on the resindentin bond strength was evaluated after 10 or 60min of exposure time. Data were statistically analyzed at a 95% confidence interval. Results Both cross-linkers increased the elastic modulus of demineralized dentin as exposure time increased. Swelling ratio was lower for treated samples when compared to control groups. No statistically significant changes to the UTS indicate that collagenase had no effect on dentin matrix treated with either GSE or COE. Resindentin bonds significantly increased following treatment with GSE regardless of the application time or adhesive system used. Significance Increased mechanical properties and stability of dentin matrix can be achieved by the use of PA-rich collagen cross-linkers most likely due to the formation of a PAcollagen complex. The short term resindentin bonds can be improved after 10min dentin treatment.(C) 2010 Academy of Denta lMaterials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To characterize the interaction of 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide Hydrochloride (EDC) with dentin matrix and its effect on the resin-dentin bond. Methods: Changes to the stiffness of demineralized dentin fragments treated with EDC/N-hydroxysuccinimide (NHS) in different solutions were evaluated at different time points. The resistance against enzymatic degradation was indirectly evaluated by ultimate tensile strength (UTS) test of demineralized dentin treated or not with EDC/NHS and subjected to collagenase digestion. Short- and long-term evaluations of the strength of resin-dentin interfaces treated with EDC/NHS for 1 h were performed using microtensile bond strength (mu TBS) test. All data (MPa) were individually analyzed using ANOVA and Tukey HSD tests (alpha = 0.05). Results: The different exposure times significantly increased the stiffness of dentin (p < 0.0001, control-5.15 and EDC/NHS-29.50), while no differences were observed among the different solutions of EDC/NHS (p = 0.063). Collagenase challenge did not affect the UTS values of EDC/NHS group (6.08) (p > 0.05), while complete degradation was observed for the control group (p = 0.0008, control-20.84 and EDC/NHS-43.15). EDC/NHS treatment did not significantly increase resin-dentin mu TBS, but the values remained stable after 12 months water storage (p < 0.05). Conclusions: Biomimetic use of EDC/NHS to induce exogenous collagen cross-links resulted in increased mechanical properties and stability of dentin matrix and dentin-resin interfaces. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 250-255, 2010.
Resumo:
Metalloproteinases (MMPs) have been implicated with metabolism of collagen in physiological and pathological processes in human dentine. As bovine teeth have been used as a substitute for human teeth in laboratory analysis, this study evaluated the activity of MMP-2 and -9 in bovine versus human dentine. Bovine and human dentine fragments, from crowns and roots, were powderized. Protein extraction was performed by two protocols: a neutral extraction with guanidine-HCl/EDTA (pH 7.4) and an acidic extraction with citric acid (pH 2.3). Gelatinolytic activities of extracts were revealed by zymography. MMP-2 and -9 were detected in crown and root dentine from bovine and human teeth. Total activities of MMP-2 were 11.4 +/- 2.2, 14.6 +/- 2.0, 9.7 +/- 1.2 and 12.4 +/- 0.9 ng/ml for bovine root, human root, bovine crown and human crown dentine, respectively. Corresponding activities for MMP-9 were 14.9 +/- 2.0, 15.3 +/- 1.3, 15.4 +/- 1.3 and 15.5 +/- 1.3 ng/ml, respectively. Bovine dentine was found to be a reliable substrate for studies involving the activity of MMP-2 and -9. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Matrix metalloproteinase (MMP) inhibition has been shown to reduce dentin caries progression, but its role in dental erosion has not yet been assessed. This study tested the hypothesis that gels containing MMP inhibitors (epigallocatechin gallate-EGCG and chlorhexidine) can prevent dental erosion. Volunteers (n = 10) wore palatal devices containing bovine dentin blocks (n = 10/group) treated for 1 min with EGCG at 10 (EGCG10) or 400 mu M (EGCG400), chlorhexidine at 0.012%, F at 1.23% (NaF), and no vehicle (placebo). Erosion was performed with Coca-Cola (R) (5 min) 4X/day during 5 days. The wear, assessed by profilometry (mean +/- SD, mu m), was significantly reduced by the gels containing MMP inhibitors (0.05 +/- 0.02(a), 0.04 +/- 0.02(a), and 0.05 +/- 0.02(a) for EGCG10, EGCG400, and chlorhexidine, respectively) when compared with NaF (0.79 +/- 0.35(b)) and placebo gels (1.77 +/- 0.35(b)) (Friedman and Dunn`s tests, p < 0.01). The use of gels delivering MMP inhibitors was shown to prevent erosion and opens a new perspective for protection against dental erosion.
Resumo:
MMPs are endopeptidases that play a pivotal role in ECM turnover. RECK is a single membrane-anchored MMP-regulator. Here, we evaluated the temporal and spatial expression of MMP-2, MMP-9, and RECK during alveolar bone regeneration. The maxillary central incisor of Wistar rats was extracted and the animals were killed at 1, 3, 7, 10, 14, 21, 28, and 42 days post-operatively (n = 3/period). The hemimaxillae were collected, demineralized and embedded in paraffin. Immunohistochemical analysis was performed by the immunoperoxidase technique with polyclonal antibodies. On day 1, polymorphonuclear cells in the blood clot presented mild immunolabeling for MMPs. During bone remodeling, osteoblasts facing new bone showed positive staining for gelatinases and RECK in all experimental periods. MMPs were also found in the connective tissue and endothelial cells. Our results show for the first time that inactive and/or active forms of MMP-2, MMP-9 and RECK are differentially expressed by osteogenic and connective cells during several events of alveolar bone regeneration. This may be important for the replacement of the blood clot by connective tissue, and in the formation, maturation and remodeling of new bone.
Resumo:
Objective: The objective of this study was to determine the expression of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) during apical periodontitis development. Methods: Using an experimental design of induced periapical lesions in rats and immunohistochemistry assay as investigative tool, the MMP-2 and MMP-9 expression and distribution were evaluated at 3, 7,14, 21, 30,60 and 90 days after coronary access and pulp exposure of the first left mandibular molar to the oral environment. Two blind observers scored the immunoreactivity. A semi-quantitative analysis was performed. Results: Except at day 3, MMP-2 and MMP-9 immunostaining was observed in all experimental periods. The MMP-2 (p = 0.004) and MMP-9 (p = 0.005) immunostaining was higher in the period between 7 and 21 days. They were mainly observed in cells surrounding the apical foramen and adjacent periapical areas. Cells into the hypercementosis areas were strongly stained while both osteoblasts and osteoclasts; presented discrete staining along of this study. No staining was observed on epithelial walls. At 30, 60 and 90 days, the subjacent connective tissue presented intense MMP-2 and MMP-9 immunostaining in mononuclear cells (suggestive of fibroblasts, macrophages, infiltrating neutrophils and lymphocytes). Conclusion: The results observed in this study suggest that MMP-2 and MMP-9 play a critical role in the development of inflammatory periapical lesions, probably involved in the extracellular matrix (ECM) degradation during the initial phase of the lesion development. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. The flat surfaces of two types of dentin (ND and CAD) were prepared with a water-cooled high-speed diamond disc, then acidetched, rinsed and air-dried. In the control groups, the dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or two-step (Single Bond 2-SB) etch-and-rinse adhesive. In the experimental groups, the dentin was rehydrated with 2% CHX (60 seconds), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. The specimens were prepared for microtensile bond testing in accordance with the non-trimming technique, then tested either immediately or after six-months storage in artificial saliva. The data were analyzed by ANOVA/Bonferroni tests (alpha=0.05). CHX did not affect the immediate bond strength to ND or CAD (p>0.05). CHX treatment significantly lowered the loss of bond strength after six months as seen in the control bonds for ND (p<0.05), but it did not alter the bond strength of CAD (p>0.05). The application of NIP on CHX-treated ND or CAD produced bonds that did not change over six months of storage.
Resumo:
Background. Mesenchymal stem cells (MSCs) from human umbilical cord vein have great potential for use in cell therapy because of their ease of isolation, expansion, and differentiation, in addition to their relative acceptance from the ethical point of view. Obtaining the umbilical cord at birth does not present any risk to either mother or child. Objective. To isolate and promote in vitro expansion and differentiation of MSCs from human umbilical cord vein into cells with a pancreatic endocrine phenotype. Methods. Mesenchymal stem cells obtained from human umbilical cord vein via collagenase digestion were characterized at cytochemistry and fluorescent-activated cell sorting, and expanded in vitro. Differentiation of MSCs into an endocrine phenotype was induced using high-glucose (23 mmol/L) medium containing nicotinamide, exendin-4, and 2-mercaptoethanol. Expression of insulin, somatostatin, glucagon, and pancreatic and duodenal homeobox 1 was analyzed using immunofluorescence. Results. Cells isolated from the umbilical cord vein were MSCs as confirmed at cytochemistry and fluorescent-activated cell sorting. Expression of somatostatin, glucagon, and pancreatic and duodenal homeobox 1 by differentiated cells was demonstrated using immunofluorescence. Insulin was not expressed. Conclusions. The MSC differentiation protocol used in the present study induced expression of some endocrine markers. Insulin was not produced by these cells, probably because of incomplete induction of differentiation.