24 resultados para Clostridium quorum sensing
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Connectivity of the glycocalyx covering of small communities of Acidithiobacillus ferrooxidans bacteria deposited on hydrophilic mica plates was imaged by atomic force microscopy. When part of the coverage was removed by water rinsing, an insoluble structure formed by corrals surrounding each individual bacterium was observed. A collective ring structure with clustered bacteria (>= 3) was observed, which indicates that the bacteria perceived the neighborhood in order to grow a protective structure that results in smaller production of exopolysaccharides material. The most surprising aspect of these collective corral structures was that they occur at a low bacterial cell density. The deposited layers were also analyzed by confocal Raman microscopy and shown to contain polysaccharides, protein, and glucoronic acid.
Resumo:
Background: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.
Resumo:
The acyl-homoserine lactones (acyl-HSLs) produced by Methylobacterium mesophilicum isolated from orange trees infected with the citrus variegated chlorosis (CVC) disease have been studied, revealing the occurrence of six long-chain acyl-HSLs, i.e., the saturated homologues (S)-N-dodecanoyl (1) and (S)-N-tetradecanoyl-HSL (5), the uncommon odd-chain N-tridecanoyl-HSL (3), the new natural product (S)-N-(2E)-dodecenoyl-HSL (2), and the rare unsaturated homologues (S)-N-(7Z)-tetradecenoyl (4) and (S)-N-(2E,7Z)-tetradecadienyl-HSL (6). The absolute configurations of all HSLs were determined as 3S. Compounds 2 and 6 were synthesized for the first time. Antimicrobial assays with synthetic acyl-HSLs against Gram-positive bacterial endophytes co-isolated with M. mesophilicum from CVC-infected trees revealed low or no antibacterial activity.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
The objectives of this study were to isolate psychrotrophic clostridia from Brazilian vacuum-packed beef cuts (spoiled or not) and to identify the isolates by using 16S rRNA gene sequencing. Anaerobic psychrotrophic microorganisms were also enumerated and samples were collected to verify the incidence of psychrotrophic clostridia in the abattoir environment. Vacuum-packed beef cuts (n = 8 grossly distended and n = 5 non-spoiled) and environmental samples were obtained from a beef packing plant located in the state of Sao Paulo, Brazil. Each sample was divided in three subsamples (exudate, beef surface and beef core) that were analyzed for vegetative forms, total spore-forming, and sulfide reducing spore-forming, both activated by alcohol and heat. Biochemical profiles of the isolates were obtained using API20A, with further identification using 16S rRNA gene sequencing. The growth temperature and the pH range were also assessed. Populations of psychrotrophic anaerobic vegetative microorganisms of up to 10(10) CFU/(g, mL or 100 cm(2)) were found in `blown pack` samples, while in non-spoiled samples populations of 10(5) CFU/(g, CFU/mL or CFU/100cm(2)) was found. Overall, a higher population of total spores and sulfide reducing spores activated by heat in spoiled samples was found. Clostridium gasigenes (n = 10) and C. algidicarnis (n = 2) were identified using 16S rRNA gene sequencing. Among the ten C. gasigenes isolates, six were from spoiled samples (C1, C2 and C9), two were isolated from non-spoiled samples (C4 and C5) and two were isolated from the hide and the abattoir corridor/beef cut conveyor belt. C. algidicarnis was recovered from spoiled beef packs (C2). Although some samples (C3, C7, C10 and C14) presented signs of `blown pack` spoilage, Clostridium was not recovered. C. algidicarnis (n = 1) and C. gasigenes (n = 9) isolates have shown a psychrotrophic behavior, grew in the range 6.2-8.2. This is the first report on the isolation of psychrotrophic Clostridium (C. gasigenes and C. algidicarnis) in Brazil. This study shows that psychrotrophic Clostridium may pose a risk for the stability of vacuum-packed beef produced in tropical countries during shelf-life and highlights the need of adopting control measures to reduce their incidence in abattoir and the occurrence of `blown pack` spoilage. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Wear behavior of coatings has usually been described in terms of mechanical properties such as hardness (H) and effective elastic modulus (E*). Alternatively, an energy approach appears as a promising analysis taking into account the influence of those properties. In a nanoindentation test, the dissipated energy depends not only on the hardness and elastic modulus, but also on the elastic recovery (W(e)). This work aims to establish a relation between plastic deformation energy (E(p)) during depth-sensing indentation method and the grooving resistance of coatings in nanoscratch tests. An energy dissipation coefficient (K(d)) was defined, calculated as the ratio of the plastic to the total deformation energy (E(p)/E(t)), which represents the energy dissipation of materials. Reactive depositions using titanium as the target and nitrogen and methane as reactive gases were obtained by triode magnetron sputtering, in order to assess wear and nanoindentation data. A topographical, chemical and microstructural characterization has been conducted using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), wave dispersion spectroscopy (WDS), scanning electron (SEM) and atomic force microscopy (AFM) techniques. Nanoscratch results showed that the groove depth was well correlated to the energy dissipation coefficient of the coatings. On the other hand, a reduction in the coefficient was found when the elastic recovery was increased. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we studied the mixture of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), a commercial polymer, with monobasic potassium phosphate (KDP), a piezoelectric salt, as a possible novel material in the fabrication of a low cost, easy-to-make,flexible pressure sensing device. The mixture between KDP and PEDOT: PSS was painted in a flexible polyester substrate and dried. Afterwards, I x V curves were carried out. The samples containing KDP presented higher values of current in smaller voltages than the PEDOT: PSS without KDP. This can mean a change in the chain arrays. Other results showed that the material responds to directly applied pressure to the sample that can be useful to sensors fabrication. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed-batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ(0)) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50-60 L(f)/mL) for NZ(0) > 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield (similar to 60 L(f)/mL) about 33% higher than those of fed-batch runs with addition at fixed concentration (similar to 45 L(f)/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial,scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 26: 88-92, 2010
Resumo:
A 2(3-1) factorial experimental design was used to evaluate the performance of a perforated rotating disc contactor to extract alpha-toxin from the fermented broth of Clostridium perfringens Type A by aqueous two-phase system of polyethylene glycol-phosphate salts. The influence of three independent variables, specifically the dispersed phase flowrate, the continuous phase flowrate and the disc rotational speed, was investigated on the hold up, the mass transfer coefficient, the separation efficiency and the purification factor, taken as the response variables. The optimum dispersed phase flowrate was 3.0 mL/min for all these responses. Besides, maximum values of hold up (0.80), separation efficiency (0. 10) and purification factor (2.4) were obtained at this flowrate using the lowest disc rotational speed (35 rpm), while the optimum mass transfer coefficient (0. 165 h(-1)) was achieved at the highest agitation level (140 rpm). The results of this study demonstrated that the dispersed phase flowrate strongly influenced the performance of PRDC, in that both the mass transfer coefficient and hold up increased with this parameter. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
BACKGROUND: Purification of a-toxin produced by Clostridium perfringens type A in aqueous two-phase systems (ATPS) was studied with a full two-level factorial design on two factors (concentrations of 8000 g mol(-1) PEG and phosphate salt at pH 8.0), to estimate the influence of these factors on the purification results. RESULTS: The partition coefficient (K), purification factor (PF) and activity yield (Y) were strongly influenced by the PEG and phosphate concentrations. Raising the levels of the two factors increased these responses. The highest purification factor (5.7) was obtained with PEG and phosphate concentrations of 17.5% and 15%, respectively. CONCLUSION: These results support the proposal that polymer excluded volume and hydrophobic interactions are the factors that drive the alpha-toxin in PEG/phosphate aqueous two-phase systems. (c) 2008 Society of Chemical Industry
Resumo:
In this work, we disrupted one of three putative phosphatidylinositol phospholipase C genes of Aspergillus nidulans and studied its effect on carbon source sensing linked to vegetative mitotic nuclear division. We showed that glucose does not affect nuclear division rates during early vegetative conidial germination (6-7 h) in either the wild type or the plcA-deficient mutant. Only after 8 h of cultivation on glucose did the mutant strain present some decrease in nuclear duplication. However, decreased nuclear division rates were observed in the wild type when cultivated in media amended with polypectate, whereas our plcA-deficient mutant did not show slow nuclear duplication rates when grown on this carbon source, even though it requires induction and secretion of multiple pectinolytic enzymes to be metabolized. Thus, plcA appears to be directly linked to high-molecular-weight carbon source sensing.
Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum
Resumo:
This work reports on the effect of initial substrate concentration on COD consumption, pH, and H(2) production during cassava processing wastewater fermentation by Clostridium acetobutylicum ATCC 824. Five initial COD wastewater concentrations, namely 5.0, 7.5, 10.7, 15.0, and 30.0 g/L, were used. The results showed that higher substrate concentrations (30.0 and 15.0 COD/L) led to lower H(2) yield as well as less efficient substrate conversion into H(2). On the other hand, initial COD concentrations of 10.7, 7.5 and 5 g/L furnished 1.34, 1.2 and 2.41 mol H(2)/mol glucose, with efficiency of glucose conversion into H(2) of 34, 30, and 60% (mol/mol), respectively. These results demonstrate that cassava processing wastewater, a highly polluting effluent, can be successfully employed as substrate for H(2) production by C acetobutylicum at lower COD concentrations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We have designed, built, and tested an early prototype of a novel subxiphoid access system intended to facilitate epicardial electrophysiology, but with possible applications elsewhere in the body. The present version of the system consists of a commercially available insertion needle, a miniature pressure sensor and interconnect tubing, read-out electronics to monitor the pressures measured during the access procedure, and a host computer with user-interface software. The nominal resolution of the system is <0.1 mmHg, and it has deviations from linearity of <1%. During a pilot series of human clinical studies with this system, as well as in an auxiliary study done with an independent method, we observed that the pericardial space contained pressure-frequency components related to both the heart rate and respiratory rate, while the thorax contained components related only to the respiratory rate, a previously unobserved finding that could facilitate access to the pericardial space. We present and discuss the design principles, details of construction, and performance characteristics of this system.
Resumo:
Background/Aim: Some studies have identified an association of kidney stone formation with vitamin D receptor (VDR) or calcium-sensing receptor (CaSR) polymorphisms. We aimed to evaluate the association between these polymorphisms with urinary calcium excretion (uCa) in calcium-stone-forming patients. Methods: VDR polymorphism, detected by BsmI digestion, and 3 CaSR polymorphisms (G/T at codon 986, G/A at codon 990 and C/G at codon 1011), detected by direct sequencing, were evaluated in 100 hypercalciuric (HCa) and 101 normocalciuric (NCa) calcium-stone-forming patients. Results: The total allelic frequency of VDR polymorphism was: 16% BB, 49% Bb and 35% bb. The prevalence of bb genotype was significantly higher in the HCa when compared to the NCa group (43 vs. 27%). With respect to CaSR polymorphisms, 986S, 990G and 1011E variant alleles were detected, respectively, in 5, 4 and 3% of the whole sample and 5 CaSR haplotypes were identified: 94% ARQ (wildtype), 3% SRQ, 1.5% AGQ, 1.0% ARE and 0.5% AGE. No statistical differences have been observed between NCa and HCa with respect to these CaSR haplotypes. Conclusions: The present study suggested that bb homozygous for VDR polymorphism was overrepresented in hypercalciuric stone formers. Urinary calcium excretion was not associated with CaSR polymorphism in the present sample. Copyright (C) 2009 S. Karger AG, Basel