14 resultados para Classification image technique

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Texture is an important visual attribute used to describe the pixel organization in an image. As well as it being easily identified by humans, its analysis process demands a high level of sophistication and computer complexity. This paper presents a novel approach for texture analysis, based on analyzing the complexity of the surface generated from a texture, in order to describe and characterize it. The proposed method produces a texture signature which is able to efficiently characterize different texture classes. The paper also illustrates a novel method performance on an experiment using texture images of leaves. Leaf identification is a difficult and complex task due to the nature of plants, which presents a huge pattern variation. The high classification rate yielded shows the potential of the method, improving on traditional texture techniques, such as Gabor filters and Fourier analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new technique for obtaining model fittings to very long baseline interferometric images of astrophysical jets. The method minimizes a performance function proportional to the sum of the squared difference between the model and observed images. The model image is constructed by summing N(s) elliptical Gaussian sources characterized by six parameters: two-dimensional peak position, peak intensity, eccentricity, amplitude, and orientation angle of the major axis. We present results for the fitting of two main benchmark jets: the first constructed from three individual Gaussian sources, the second formed by five Gaussian sources. Both jets were analyzed by our cross-entropy technique in finite and infinite signal-to-noise regimes, the background noise chosen to mimic that found in interferometric radio maps. Those images were constructed to simulate most of the conditions encountered in interferometric images of active galactic nuclei. We show that the cross-entropy technique is capable of recovering the parameters of the sources with a similar accuracy to that obtained from the very traditional Astronomical Image Processing System Package task IMFIT when the image is relatively simple (e. g., few components). For more complex interferometric maps, our method displays superior performance in recovering the parameters of the jet components. Our methodology is also able to show quantitatively the number of individual components present in an image. An additional application of the cross-entropy technique to a real image of a BL Lac object is shown and discussed. Our results indicate that our cross-entropy model-fitting technique must be used in situations involving the analysis of complex emission regions having more than three sources, even though it is substantially slower than current model-fitting tasks (at least 10,000 times slower for a single processor, depending on the number of sources to be optimized). As in the case of any model fitting performed in the image plane, caution is required in analyzing images constructed from a poorly sampled (u, v) plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most techniques used for estimating the age of Sotalia guianensis (van B,n,den, 1864) (Cetacea; Delphinidae) are very expensive, and require sophisticated equipment for preparing histological sections of teeth. The objective of this study was to test a more affordable and much simpler method, involving of the manual wear of teeth followed by decalcification and observation under a stereomicroscope. This technique has been employed successfully with larger species of Odontoceti. Twenty-six specimens were selected, and one tooth of each specimen was worn and demineralized for growth layers reading. Growth layers were evidenced in all specimens; however, in 4 of the 26 teeth, not all the layers could be clearly observed. In these teeth, there was a significant decrease of growth layer group thickness, thus hindering the layers count. The juxtaposition of layers hindered the reading of larger numbers of layers by the wear and decalcification technique. Analysis of more than 17 layers in a single tooth proved inconclusive. The method applied here proved to be efficient in estimating the age of Sotalia guianensis individuals younger than 18 years. This method could simplify the study of the age structure of the overall population, and allows the use of the more expensive methodologies to be confined to more specific studies of older specimens. It also enables the classification of the calf, young and adult classes, which is important for general population studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a content selection framework that improves the users` experience when they are enriching or authoring pieces of news. This framework combines a variety of techniques to retrieve semantically related videos, based on a set of criteria which are specified automatically depending on the media`s constraints. The combination of different content selection mechanisms can improve the quality of the retrieved scenes, because each technique`s limitations are minimized by other techniques` strengths. We present an evaluation based on a number of experiments, which show that the retrieved results are better when all criteria are used at time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image-Projection Explorer for Images-a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful classification, information retrieval and image analysis tools are intimately related with the quality of the features employed in the process. Pixel intensities, color, texture and shape are, generally, the basis from which most of the features are Computed and used in such fields. This papers presents a novel shape-based feature extraction approach where an image is decomposed into multiple contours, and further characterized by Fourier descriptors. Unlike traditional approaches we make use of topological knowledge to generate well-defined closed contours, which are efficient signatures for image retrieval. The method has been evaluated in the CBIR context and image analysis. The results have shown that the multi-contour decomposition, as opposed to a single shape information, introduced a significant improvement in the discrimination power. (c) 2008 Elsevier B.V. All rights reserved,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional content-based image retrieval (CBIR) systems use low-level features such as colors, shapes, and textures of images. Although, users make queries based on semantics, which are not easily related to such low-level characteristics. Recent works on CBIR confirm that researchers have been trying to map visual low-level characteristics and high-level semantics. The relation between low-level characteristics and image textual information has motivated this article which proposes a model for automatic classification and categorization of words associated to images. This proposal considers a self-organizing neural network architecture, which classifies textual information without previous learning. Experimental results compare the performance results of the text-based approach to an image retrieval system based on low-level features. (c) 2008 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a study on a deterministic partially self-avoiding walk (tourist walk), which provides a novel method for texture feature extraction. The method is able to explore an image on all scales simultaneously. Experiments were conducted using different dynamics concerning the tourist walk. A new strategy, based on histograms. to extract information from its joint probability distribution is presented. The promising results are discussed and compared to the best-known methods for texture description reported in the literature. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a novel approach in order to increase the recognition power of Multiscale Fractal Dimension (MFD) techniques, when applied to image classification. The proposal uses Functional Data Analysis (FDA) with the aim of enhancing the MFD technique precision achieving a more representative descriptors vector, capable of recognizing and characterizing more precisely objects in an image. FDA is applied to signatures extracted by using the Bouligand-Minkowsky MFD technique in the generation of a descriptors vector from them. For the evaluation of the obtained improvement, an experiment using two datasets of objects was carried out. A dataset was used of characters shapes (26 characters of the Latin alphabet) carrying different levels of controlled noise and a dataset of fish images contours. A comparison with the use of the well-known methods of Fourier and wavelets descriptors was performed with the aim of verifying the performance of FDA method. The descriptor vectors were submitted to Linear Discriminant Analysis (LDA) classification method and we compared the correctness rate in the classification process among the descriptors methods. The results demonstrate that FDA overcomes the literature methods (Fourier and wavelets) in the processing of information extracted from the MFD signature. In this way, the proposed method can be considered as an interesting choice for pattern recognition and image classification using fractal analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of translation invariant and locally defined binary image operators over large windows is made difficult by decreased statistical precision and increased training time. We present a complete framework for the application of stacked design, a recently proposed technique to create two-stage operators that circumvents that difficulty. We propose a novel algorithm, based on Information Theory, to find groups of pixels that should be used together to predict the Output Value. We employ this algorithm to automate the process of creating a set of first-level operators that are later combined in a global operator. We also propose a principled way to guide this combination, by using feature selection and model comparison. Experimental results Show that the proposed framework leads to better results than single stage design. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new framework for generating triangular meshes from textured color images. The proposed framework combines a texture classification technique, called W-operator, with Imesh, a method originally conceived to generate simplicial meshes from gray scale images. An extension of W-operators to handle textured color images is proposed, which employs a combination of RGB and HSV channels and Sequential Floating Forward Search guided by mean conditional entropy criterion to extract features from the training data. The W-operator is built into the local error estimation used by Imesh to choose the mesh vertices. Furthermore, the W-operator also enables to assign a label to the triangles during the mesh construction, thus allowing to obtain a segmented mesh at the end of the process. The presented results show that the combination of W-operators with Imesh gives rise to a texture classification-based triangle mesh generation framework that outperforms pixel based methods. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.