17 resultados para Central composite experimental design

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fractional factorial design approach has been used to enhance secondary metabolite production by two Penicillium strains. The method was initially used to improve the production of bioactive extracts as a whole and subsequently to optimize the production of particular bioactive metabolites. Enhancements of over 500% in secondary metabolite production were observed for both P. oxalicum and P. citrinum. Two new alkaloids, citrinalins A (5) and B (6), were isolated and identified from P. citrinum cultures optimized for production of minor metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supercritical carbon dioxide (SC-CO(2)) extractions of Brazilian cherry (Eugenia uniflora L.) were carried out under varied conditions of pressure and temperature, according to a central composite 2(2) experimental design, in order to produce flavour-rich extracts. The composition of the extracts was evaluated by gas chromatography coupled with mass spectrometry (GC/MS). The abundance of the extracted compounds was then related to sensory analysis results, assisted by principal component and factorial discriminant analysis (PCA and FDA, respectively). The identified sesquiterpenes and ketones were found to strongly contribute to the characteristic flavour of the Brazilian cherry. The extracts also contained a variety of other volatile compounds, and part of the fruit wax contained long-chain hydrocarbons that according to multivariate analysis, contributed to the yield of the extracts, but not the flavour. Volatile phenolic compounds, to which antioxidant properties are attributed, were also present in the extracts in high proportion, regardless of the extraction conditions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work evaluated the effect of pressure and temperature on yield and characteristic flavour intensity of Brazilian cherry (Eugenia uniflora L) extracts obtained by supercritical CO(2) using response surface analysis, which is a simple and efficient method for first inquiries. A complete central composite 2(2) factorial experimental design was applied using temperature (ranging from 40 to 60 degrees C) and pressure (from 150 to 250 bar) as independent variables. A second order model proved to be predictive (p <= 0.05) for the extract yield as affected by pressure and temperature, with better results being achieved at the central point (200 bar and 50 degrees C). For the flavour intensity, a first order model proved to be predictive (p <= 0.05) showing the influence of temperature. Greater characteristic flavour intensity in extracts was obtained for relatively high temperature (> 50 degrees C), Therefore, as far as Brazilian cherry is concerned, optimum conditions for achieving higher extract yield do not necessarily coincide to those for obtaining richer flavour intensity. Industrial relevance: Supercritical fluid extraction (SFE) is an emerging clean technology through which one may obtain extracts free from organic solvents. Extract yields from natural products for applications in food, pharmaceutical and cosmetic industries have been widely disseminated in the literature. Accordingly, two lines of research have industrial relevance, namely, (i) operational optimization studies for high SFE yields and (ii) investigation on important properties extracts are expected to present (so as to define their prospective industrial application). Specifically, this work studied the optimization of SFE process to obtain extracts from a tropical fruit showing high intensity of its characteristic flavour, aiming at promoting its application in natural aroma enrichment of processed foods. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pH indicator film based on cassava starch plasticized with sucrose and inverted sugar and incorporated with grape and spinach extracts as pH indicator sources (anthocyanin and chlorophyll) has been developed, and its packaging properties have been assessed. A second-order central composite design (2(2)) with three central points and four star points was used to evaluate the mechanical properties (tensile strength, tensile strength at break, and elongation at break percentage), moisture barrier, and microstructure of the films, and its potential as a pH indicator packaging. The films were prepared by the casting technique and conditioned under controlled conditions (75% relative humidity and 23 degrees C), at least 4 days before the analyses. The materials were exposed to different pH solutions (0, 2, 7, 10, and 14) and their color parameters (L*, a*, b*, and haze) were measured by transmittance. Grape and spinach extracts have affected the material characterization. Film properties (mechanical properties and moisture barrier) were strongly influenced by extract concentration presenting lower results than for the control. Films containing a higher concentration of grape extract presented a greater color change at different pH`s suggesting that anthocyanins are more effective as pH indicators than chlorophyll or the mixture of both extracts. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 1069-1079,2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to select the optimal operational conditions for the production of instant soy protein isolate (SPI) by pulsed fluid bed agglomeration. The spray-dried SPI was characterized as being a cohesive powder, presenting cracks and channeling formation during its fluidization (Geldart type A). The process was carried out in a pulsed fluid bed, and aqueous maltodextrin solution was used as liquid binder. Air pulsation, at a frequency of 600 rpm, was used to fluidize the cohesive SPI particles and to allow agglomeration to occur. Seventeen tests were performed according to a central composite design. Independent variables were (i) feed flow rate (0.5-3.5 g/min), (ii) atomizing air pressure (0.5-1.5 bar) and (iii) binder concentration (10-50%). Mean particle diameter, process yield and product moisture were analyzed as responses. Surface response analysis led to the selection of optimal operational parameters, following which larger granules with low moisture content and high process yield were produced. Product transformations were also evaluated by the analysis of size distribution, flowability, cohesiveness and wettability. When compared to raw material, agglomerated particles were more porous and had a more irregular shape, presenting a wetting time decrease, free-flow improvement and cohesiveness reduction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allyl 1-naphthyl ethers are useful compounds for different purposes, but reported methods to synthesize them require long reaction times. In this work, we have obtained allyl 1-naphthyl ether in good yield using ultrasonic-assisted methodology in a 1-h reaction. A central composite design was used to obtain a statistical model and a response surface (p < 0.05; R(2) = 0.970; R(adj)(2) = 0.949; R(pred)(2) = 0.818) that can predict the optimal conditions to maximize the yield, validated experimentally. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, a novel polydimethylsiloxane/activated carbon (PDMS-ACB) material is proposed as a new polymeric phase for stir bar sorptive extraction (SBSE). The PDMS-ACB stir bar, assembled using a simple Teflon (R)/glass capillary mold, demonstrated remarkable stability and resistance to organic solvents for more than 150 extractions. The SBSE bar has a diameter of 2.36 mm and a length of 2.2 cm and is prepared to contain 92 mu L of polymer coating. This new PDMS-ACB bar was evaluated for its ability to determine the quantity of pesticides in sugarcane juice samples by performing liquid desorption (LD) in 200 mu L of ethyl acetate and analyzing the solvent through gas chromatography coupled with mass spectrometry (GC-MS). A fractional factorial design was used to evaluate the main parameters involved in the extraction procedure. Then, a central composite design with a star configuration was used to optimize the significant extraction parameters. The method used demonstrated a limit of quantification (LOQ) of 0.5-40 mu g/L, depending on the analyte detected; the amount of recovery varied from 0.18 to 49.50%, and the intraday precision ranged from 0.072 to 8.40%. The method was used in the analysis of real sugarcane juice samples commercially available in local markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid hormones exert most of their physiological effects through two thyroid hormone receptor (TR) subtypes, TR alpha and TR beta, which associate with many transcriptional coregulators to mediate activation or repression of target genes. The search for selective TR beta ligands has been stimulated by the finding that several pharmacological actions mediated by TR beta might be beneficial in medical conditions such as obesity, hypercholesterolemia and diabetes. Here, we present a new methodology which employs surface plasmon resonance to investigate the interactions between TR beta ligand binding domain (LBD) complexes and peptides derived from the nuclear receptor interaction motifs of two of its coregulators, SRC2 and DAX1. The effect of several TR beta ligands, including the TR beta selective agonist GC-I and the TR beta selective antagonist NH-3, were investigated. We also determined the kinetic rate constants for the interaction of TR beta-T3 with both coregulators, and accessed the thermodynamic parameters for the interaction with DAX1. Our findings Suggest that flexibility plays an important role in the interaction between the receptor and its coregulators. and point out important aspects of experimental design that should be addressed when using TR beta LBD and its agonists. Furthermore, the methodology described here may be useful for the identification of new TR beta ligands. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: High-risk human papillomavirus (HPV) is the main etiologic factor for cervical cancer. The severity of HPV-associated cervical lesions has been correlated to the number of infiltrating macrophages. The objective of this work is to characterize the role of tumor-associated macrophages (TAM) on the immune cellular response against the tumor. Experimental Design: We used the HPV16 E6- and E7-expressing TC-1 mouse tumor model to study the effect of TAM on T-cell function in vitro, and depleted TAM, using clodronate-containing liposomes, to characterize its role in vivo. Results: TAM, characterized by the positive expression of CD45, F4/80, and CD11b, formed the major population of infiltrating tumor cells. TAM displayed high basal Arginase I activity, producing interleukin-10 (IL-10); they were resistant to iNOSll activity induction, therefore reversion to M1 phenotype, when stimulated in vitro with lipopolysaccharide/IFN gamma, indicating an M2 phentoype. In cultures of isolated TAM, TAM induced regulatory phenotype, characterized by IL-10 and Foxp3 expression, and inhibited proliferation of CD8 lymphocytes. In vivo, depletion of TAM inhibited tumor growth and stimulated the infiltration of tumors by HPV16 E7(49-57)-specific CD8 lymphocytes, whereas depletion of Gr1(+) tumor-associated cells had no effect. Conclusions: M2-like macrophages infiltrate HPV16-associated tumors causing suppression of antitumor T-cell response, thus facilitating tumor growth. Depletion or phenotype alteration of this population should be considered in immunotherapy strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we describe a procedure for measuring the total light emission of the naturally bioluminescent tropical fungus Gerronema viridilucens and the optimization of culture conditions using multivariate factorial ANOVA. Cultures growing on an agar surface in 35 mm Petri dishes at 90% humidity show optimal bioluminescence emission at 25 degrees C in the presence of 1.0% sugar cane molasses, 0.10% yeast extract and pH 6.0 (nonbuffered). Temperature and pH are the most important factors for both mycelial growth and bioluminescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to optimize the rheological properties of probiotic yoghurts supplemented with skimmed milk powder (SMP) whey protein concentrate (WPC) and sodium caseinate (Na-Cn) by using an experimental design type simplex-centroid for mixture modeling It Included seven batches/trials three were supplemented with each type of the dairy protein used three corresponding to the binary mixtures and one to the ternary one in order to increase protein concentration in 1 g 100 g(-1) of final product A control experiment was prepared without supplementing the milk base Processed milk bases were fermented at 42 C until pH 4 5 by using a starter culture blend that consisted of Streptococcus thermophilus Lactobacillus delbrueckii subsp bulgaricus and Bifidobacterium (Humans subsp lactis The kinetics of acidification was followed during the fermentation period as well the physico-chemical analyses enumeration of viable bacteria and theological characteristics of the yoghurts Models were adjusted to the results (kinetic responses counts of viable bacteria and theological parameters) through three regression models (linear quadratic and cubic special) applied to mixtures The results showed that the addition of milk proteins affected slightly acidification profile and counts of S thermophilus and B animal`s subsp lactis but it was significant for L delbrueckii subsp bulgaricus Partially-replacing SMP (45 g/100 g) with WPC or Na-Cn simultaneously enhanced the theological properties of probiotic yoghurts taking into account the kinetics of acidification and enumeration of viable bacteria (C) 2010 Elsevier Ltd All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to develop a fast capillary electrophoresis method for the determination of inorganic cations (Na(+), K(+), Ca(2+), Mg(2+)) in biodiesel samples, using barium (Ba(2+)) as the internal standard. The running electrolyte was optimized through effective mobility curves in order to select the co-ion and Peakmaster software was used to determine electromigration dispersion and buffer capacity. The optimum background electrolyte was composed of 10 mmol L(-1) imidazole and 40 mmol L(-1) of acetic acid. Separation was conducted in a fused-silica capillary (32 cm total length and 23.5 cm effective length, 50 mu m I.D.), with indirect UV detection at 214 nm. The migration time was only 36 s. In order to obtain the optimized conditions for extraction, a fractional factorial experimental design was used. The variables investigated were biodiesel mass, pH, extractant volume, agitation and sonication time. The optimum conditions were: biodiesel mass of 200 mg, extractant volume of 200 mu L. and agitation of 20 min. The method is characterized by good linearity in the concentration range of 0.5-20 mg kg(-1) (r > 0.999), limit of detection was equal to 0.3 mg kg(-1), inter-day precision was equal to 1.88% and recovery in the range of 88.0-120%. The developed method was successfully applied to the determination of cations in biodiesel samples. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work assesses the efficiency of polyacrylamides for natural organic matter (NOM) removal from Paraiba do Sul River (Brazil) raw water for drinking purposes. Jar tests were performed following an experimental design protocol. Three kinds of polyacrylamides (anionic, cationic, and non-ionic) at 0.2 mg L(-1) were tested. After coagulation, turbidity, DOC, UVA(254) and SCAN (UV-absorbing material) were determined. Color and pH were also measured. It was found that polyacrylamides did not reduce the amounts of alum and lime needed in the process and that the amount of alum alone for removing UV-absorbing organic matter is significantly higher. Efficiency of the coagulation process decreased as follows: non-ionic -> cationic -> anionic -> no polyacrylamide. Removal efficiencies for the best case were: 100%, 90%, 83%, and 68% for turbidity, DOC, UVA(254), and SCAN, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation of phenol by a hybrid process (activated sludge + photocatalysis) in a high salinity medium (50 g L-1 of chloride) has been investigated. The sludge used from a municipal wastewater facility was adapted to the high salt concentrations prior to use. The photocatalytic conditions were optimized by means of a factorial experimental design. TiO2 P25 from Degussa was used as the photocatalyst. The initial phenol concentration was approximately 200 mg L-1 and complete removal of phenol and a mineralization degree above 98% were achieved within 25 h of treatment (24 h of biological treatment and I h of photocatalysis). From HPLC analyses, five hydroxylated intermediates formed during oxidation have been identified. The main ones were catechol and hydroquinone, followed by 1,2,4-benzenetriol, 2-hydroxy- 1,4-benzoquinone, and pyrogallol, in this order. No formation of organochlorine compounds was observed. Therefore, the proposed hybrid process showed itself to be suited to treat phenol in the presence of high contents of salt. (c) 2007 Elsevier B.V. All rights reserved.