8 resultados para Cave of the Winds
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
By means of numerical simulations, we investigate magnetized stellar winds of pre-main-sequence stars. In particular, we analyze under which circumstances these stars will present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind. We show that the plasma-beta parameter (the ratio of thermal to magnetic energy densities) is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta(0) << 1. Using our self-consistent three-dimensional magnetohydrodynamics model, we estimate for these stellar winds the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter. In contrast to the findings of Lovelace et al., who estimated such timescales using the Weber and Davis model, our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on hot-Jupiters migration. Further simulations are necessary to investigate this result under more intense surface magnetic field strengths (similar to 2-3 kG) and higher coronal base densities, as well as in a tilted stellar magnetosphere.
Resumo:
A coupled atmospheric-oceanic model was used to investigate whether there is a positive feedback between the coastal upwelling and the sea breeze at Cabo Frio - RJ (Brazil). Two experiments were performed to ascertain the influence of the sea breeze on the coastal upwelling: the first one used the coupled model forced with synoptic NE winds of 8 m s(-1) and the sign of the sea breeze circulation was set by the atmospheric model; the second experiment used only the oceanic model with constant 8 m s(-1) NE winds. Then, to study the influence of the coastal upwelling on the sea breeze, two more experiments were performed: one using a coastal upwelling representative SST initial field and the other one using a constant and homogeneous SST field of 26 degrees C. Finally, two more experiments were conducted to verify the influence of the topography and the spatial distribution of the sea surface temperature on the previous results. The results showed that the sea breeze can intensify the coastal upwelling, but the coastal upwelling does not intensify the sea breeze circulation, suggesting that there is no positive feedback between these two phenomena at Cabo Frio.
Resumo:
The South American low level jet (SALLJ) of the Eastern Andes is investigated with Regional Climate Model version 3 (RegCM3) simulations during the 2002-2003 austral summer using two convective parameterizations (Grell and Emanuel). The simulated SALLJ is compared with the special observations of SALLJEX (SALLJ Experiment). Both the Grell and Emanuel schemes adequately simulate the low level flow over South America. However, there are some intensity differences. Due to the larger (smaller) convective activity, the Emanuel (Grell) scheme simulates more intense (weaker) low level wind than analysis in the tropics and subtropics. The objectives criteria of Sugahara (SJ) and Bonner (BJ) were used for LLJ identification. When applied to the observations, both criteria suggest a larger frequency of the SALLJ in Santa Cruz, followed by Mariscal, Trinidad and Asuncin. In Mariscal and Asuncin, the diurnal cycle indicates that SJ occurs mainly at 12 UTCs (morning), while the BJ criterion presents the SALLJ as more homogenously distributed. The concentration into two of the four-times-a-day observations does not allow conclusions about the diurnal cycle in Santa Cruz and Trinidad. The simulated wind profiles result in a lower than observed frequency of SALLJ using both the SJ and BJ criteria, with fewer events obtained with the BJ. Due to the stronger simulated winds, the Emanuel scheme produces an equal or greater relative frequency of SALLJ than the Grell scheme. However, the Grell scheme using the SJ criterion simulates the SALLJ diurnal cycle closer to the observed one. Although some discrepancies between observed and simulated mean vertical profiles of the horizontal wind are noted, there is large agreement between the composites of the vertical structure of the SALLJ, especially when the SJ criterion is used with the Grell scheme. On an intraseasonal scale, a larger southward displacement of SALLJ in February and December when compared with January has been noted. The Grell and Emanuel schemes simulated this observed oscillation in the low-level flow. However, the spatial pattern and intensity of rainfall and circulation anomalies simulated by the Grell scheme are closer to the analyses than those obtained with the Emanuel scheme.
Resumo:
This study analyzes and discusses data taken from oceanic and atmospheric measurements performed simultaneously at the Brazil-Malvinas Confluence (BMC) region in the southwestern Atlantic Ocean. This area is one of the most dynamical frontal regions of the world ocean. Data were collected during four research cruises in the region once a year in consecutive years between 2004 and 2007. Very few studies have addressed the importance of studying the air-sea coupling at the BMC region. Lateral temperature gradients at the study region were as high as 0.3 degrees C km(-1) at the surface and subsurface. In the oceanic boundary layer, the vertical temperature gradient reached 0.08 degrees C m(-1) at 500 m depth. Our results show that the marine atmospheric boundary layer (MABL) at the BMC region is modulated by the strong sea surface temperature (SST) gradients present at the sea surface. The mean MABL structure is thicker over the warmside of the BMC where Brazil Current (BC) waters predominate. The opposite occurs over the coldside of the confluence where waters from the Malvinas (Falkland) Current (MC) are found. The warmside of the confluence presented systematically higher MABL top height compared to the coldside. This type of modulation at the synoptic scale is consistent to what happens in other frontal regions of the world ocean, where the MABL adjusts itself to modifications along the SST gradients. Over warm waters at the BMC region, the MABL static instability and turbulence were increased while winds at the lower portion of the MABL were strong. Over the coldside of the BC/MC front an opposite behavior is found: the MABL is thinner and more stable. Our results suggest that the sea-level pressure (SLP) was also modulated locally, together with static stability vertical mixing mechanism, by the surface condition during all cruises. SST gradients at the BMC region modulate the synoptic atmospheric pressure gradient. Postfrontal and prefrontal conditions produce opposite thermal advections in the MABL that lead to different pressure intensification patterns across the confluence.
Resumo:
We here explore the effects of the SN explosions into the halo of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D non-equilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and/or by the action of magnetic fields that are carried to the halo with the gas in the fountains. Due to angular momentum losses to the halo, we find that the fountain material falls back to smaller radii and is not largely spread over the galactic disk. Instead, the SNe ejecta fall nearby the region where the fountain was produced, a result which is consistent with recent chemical models of the galaxy. The fall back material leads to the formation of new generations of molecular clouds and to supersonic turbulence feedback in the disk. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
By means of self-consistent three-dimensional magnetohydrodynamics (MHD) numerical simulations, we analyze magnetized solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional MHD equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from 1 to 20 G. We show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. For the maximum magnetic intensity simulated of 20 G and solar coronal base density, the wind velocity reaches values of similar to 1000 km s(-1) at r similar to 20r(0) and a maximum temperature of similar to 6 x 10(6) K at r similar to 6r(0). The increase of the field intensity generates a larger ""dead zone"" in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than similar to 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B(0) = 20 G the system recover back to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We analyze the influence of gamma in our results and we show that it is also important in determining the wind structure.
Resumo:
We show that the significantly different effective temperatures (T(eff)) achieved by the luminous blue variable AG Carinae during the consecutive visual minima of 1985-1990 (T(eff) similar or equal to 22,800 K) and 2000-2001 (T(eff) similar or equal to 17,000 K) place the star on different sides of the bistability limit, which occurs in line-driven stellar winds around T(eff) similar to 21,000 K. Decisive evidence is provided by huge changes in the optical depth of the Lyman continuum in the inner wind as T(eff) changes during the S Dor cycle. These changes cause different Fe ionization structures in the inner wind. The bistability mechanism is also related to the different wind parameters during visual minima: the wind terminal velocity was 2-3 times higher and the mass-loss rate roughly two times smaller in 1985-1990 than in 2000-2003. We obtain a projected rotational velocity of 220 +/- 50 km s(-1) during 1985-1990 which, combined with the high luminosity (L(star) = 1.5 x 10(6) L(circle dot)), puts AG Car extremely close to the Eddington limit modified by rotation (Omega Gamma limit): for an inclination angle of 90 degrees, Gamma(Omega) greater than or similar to 1.0 for M(circle dot) less than or similar to 60. Based on evolutionary models and mass budget, we obtain an initial mass of similar to 100 M(circle dot) and a current mass of similar to 60-70 M(circle dot) for AG Car. Therefore, AG Car is close to, if not at, the Omega Gamma limit during visual minimum. Assuming M = 70 M(circle dot), we find that Gamma(Omega) decreases from 0.93 to 0.72 as AG Car expands toward visual maximum, suggesting that the star is not above the Eddington limit during maximum phases.
Resumo:
Oxygen isotope records of stalagmites from China and Oman reveal a weak summer monsoon event, with a double-plunging structure, that started 8.21 +/- 0.02 kyr B. P. An identical but antiphased pattern is also evident in two stalagmite records from eastern Brazil, indicating that the South American Summer Monsoon was intensified during the 8.2 kyr B. P. event. These records demonstrate that the event was of global extent and synchronous within dating errors of <50 years. In comparison with recent model simulations, it is plausible that the 8.2 kyr B. P. event can be tied in changes of the Atlantic Meridional Overturning Circulation triggered by a glacial lake draining event. This, in turn, affected North Atlantic climate and latitudinal position of the Intertropical Convergence Zone, resulting in the observed low-latitude monsoonal precipitation patterns.