16 resultados para Ca2 -Channels

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pyroglutamyl proline-rich oligopeptides, present in the venom of the pit viper Bothrops jararaca (Bj-PROs), are the first described naturally occurring inhibitors of the angiotensin I-converting enzyme (ACE). The inhibition of ACE by the decapeptide Bj-PRO-10c (

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gomesin is an antimicrobial peptide isolated from hemocytes of a common Brazilian tarantula spider named Acanthoscurriagomesiana. This peptide exerts antitumor activity in vitro and in vivo by an unknown mechanism. In this study, the cytotoxic mechanism of gomesin in human neuroblastoma SH-SY5Y and rat pheochromocytoma PC12 cells was investigated. Gomesin induced necrotic cell death and was cytotoxic to SH-SY5Y and PC12 cells. The peptide evoked a rapid and transient elevation of intracellular calcium levels in Fluo-4-AM loaded PC12 cells, which was inhibited by nimodipine, an L-type calcium channel blocker. Preincubation with nimodipine also inhibited cell death induced by gomesin in SH-SY5Y and PC12 cells. Gomesin-induced cell death was prevented by the pretreatment with MAPK/ERK, PKC or PI3K inhibitors, but not with PKA inhibitor. In addition, gomesin generated reactive oxygen species (ROS) in SH-SY5Y cells, which were blocked with nimodipine and MAPK/ERK, PKC or PI3K inhibitors. Taken together, these results suggest that gomesin could be a useful anticancer agent, which mechanism of cytotoxicity implicates calcium entry through L-type calcium channels, activation of MAPK/ERK, PKC and PI3K signaling as well as the generation of reactive oxygen species. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ion channels have been assigned a pivotal importance in various sperm functions and are therefore promising targets for contraceptive development. The lack of data on channel functionality and pharmacology has hampered this goal. This is a consequence of technical problems of applying electrophysiological techniques to spermatozoa due to their small size and form. By using a laminin coating to increase adherence of spermatozoa and nystatin in the patch pipette for pore formation, we have adapted the whole-cell recording technique to study currents in mature uncapacitated bovine spermatozoa. Employing these conditions, in the head region, patched spermatozoa could be transferred into the whole-cell configuration. For the first time we document an outward rectifying current in mature bovine spermatozoa was blocked by tetraethyl ammonium (TEA) chloride. The observation of a shift in the reversal potential as a response to changes in the extracellular concentration of K+ ions allowed us to identify this current as K+ selective. This result shows that K+ channels in the head region of mature uncapacitated bovine spermatozoa can be suitably investigated using the whole-cell recording patch-clamp technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we described the expression and characterization of the recombinant toxin LTx2, which was previously isolated from the venomous cDNA library of a Brazilian spider, Lasiodora sp. (Mygalomorphae, Theraphosidae). The recombinant toxin found in the soluble and insoluble fractions was purified by reverse phase high-performance liquid chromatography (HPLC). Ca2+ imaging analysis revealed that the recombinant LTx2 acts on calcium channels of BC3H1 cells, blocking L-type calcium channels. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemiancistrus pankimpuju, new species, and Panaque bathyphilus, new species, are described from the main channel of the upper (Maranon) and middle (Solimoes)Amazon River, respectively. Both species are diagnosed by having a nearly white body, long filamentous extensions of both simple caudal-fin rays, small eyes, absence of an iris operculum and unique combinations of morphometrics. The coloration and morphology of these species, unique within Loricariidae, are hypothesized to be apomorphies associated with life in the dark, turbid depths of the Amazon mainstem. Extreme elongation of the caudal filaments in these and a variety of other main channel catfishes is hypothesized to have a mechanosensory function associated with predator detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium (Ca) is critical for crustaceans due to their molting cycle and its presence in the carapace as calcium carbonate, apart from the usual functions of Ca, such as cell signalling. Ca transport in Dilocarcinus pagei, a freshwater crab, was studied in isolated cells from hepatopancreas to further characterize Ca transport mechanisms in these crabs. Cells were isolated and loaded with Fluo-3, a calcium fluorescent dye. Three different cell treatments were performed: Group 1 cells were Ca free during cell dissociation, and calcium was present (at 1mM) for fluorescence cell loading and transport experiments (FC); Group 2 cells were calcium free during cell dissociation and for transport experiments, but not during cell loading (LC); and Group 3 cells were Ca free during cell dissociation, cell loading and transport experiments (WC). Intracellular Ca was recorded through time after ATP was added to the cells and ATP caused an increase in Ca efflux within 30s in all cells. WC cells showed the smallest Ca efflux compared to the other cells, probably because it was intracellularly Ca ""depleted"". Vanadate and amiloride decreased the Ca efflux when ATP was added to the cells, while verapamil did not cause any effect in Ca efflux, confirming the presence of a Ca(2+)-ATPase sensitive to vanadate in hepatopancreas of D. pagei. In a different set of experiments, cells were also exposed to a Ca pulse of 1 and 10mM during 180s. 10mM Ca increased intracellular Ca compared to 1mM, and the increase was not recovered during the experimental time. Additionally, Ca influx was reduced by verapamil and amiloride, but not completely. The results suggest that Ca influx probably occurs through an undefined exchanger, apart from Ca channels (verapamil sensitive) and electrogenic 1Na(+)(1H(+))/1 Ca(2+) exchanger (amiloride-sensitive). Similarities between freshwater and seawater crabs, lobsters and crayfish in relation to plasma membrane Ca transporters, although the environment where they live is quite diverse, suggest that universal mechanisms for Ca homeostasis are widespread among crustaceans. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perforated whole-cell configuration of the patch-clamp technique was applied to functionally identified beta-cells in intact mouse pancreatic islets to study the extent of cell coupling between adjacent beta-cells. Using a combination of current- and voltage-clamp recordings, the total gap junctional conductance between beta-cells in an islet was estimated to be 1.22 nS. The analysis of the current waveforms in a voltage-clamped cell ( due to the. ring of an action potential in a neighbouring cell) suggested that the gap junctional conductance between a pair of beta-cells was 0.17 nS. Subthreshold voltage-clamp depolarization (to -55 mV) gave rise to a slow capacitive current indicative of coupling between beta-cells, but not in non-beta-cells, with a time constant of 13.5 ms and a total charge movement of 0.2 pC. Our data suggest that a superficial beta-cell in an islet is in electrical contact with six to seven other beta-cells. No evidence for dye coupling was obtained when cells were dialysed with Lucifer yellow even when electrical coupling was apparent. The correction of the measured resting conductance for the contribution of the gap junctional conductance indicated that the whole-cell K(ATP) channel conductance (G(K,ATP)) falls from approximately 2.5 nS in the absence of glucose to 0.1 nS at 15 mM glucose with an estimated IC(50) of approximately 4 mM. Theoretical considerations indicate that the coupling between beta-cells within the islet is sufficient to allow propagation of [Ca(2+)](i) waves to spread with a speed of approximately 80 mu m s(-1), similar to that observed experimentally in confocal [Ca(2+)](i) imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: In the present study, a novel pathway by which palmilate potentiates glucose-induced insulin secretion by pancreatic beta cells was investigated. Methods: Groups of freshly isolated islets were incubated in 10 mM glucose with palmitate, LY294002, wortmannin, and fumonism B I for measurement of insulin secretion by radioimmunoassay (RIA). Also, phosphorylation and content of AKT and PKC proteins were evaluated by immunoblotting. Results: Glucose plus palmitate and glucose plus LY294002 or wortmannin (PI3K inhibitors) increased glucose-induced insulin secretion by isolated pancreatic islets. Glucose at 10 mM induced AKT and PKC zeta/lambda phosphorylation. Palmitate (0.1 mM) abolished glucose stimulation of AKT and PKC zeta/lambda phosphorylation possibly through PI3K inhibition because both LY294002 (50 mu M) and wortmannin (100 nM) caused the same effect. The inhibitory effect of palmitate on glucose-induced AKT and PKC zeta/lambda phosphorylation and the stimulatory effect of palmitate on glucose-induced insulin secretion were not observed in the presence of fumonisin B1, all inhibitor of ceramide synthesis. Conclusions: These findings support the proposition that palmilate increases insulin release in the presence of 10 mM glucose by inhibiting PI3K activity through a mechanism that involves ceramide synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca2+](i)) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of G alpha(q/11)-coupled M-1, M-3 and M-5 receptors and intracellular calcium stores, whereas G alpha(i/o)-protein coupled M-2 receptor activity mediated neuronal differentiation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP3-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of scrotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks. RESEARCH DESIGN AND METHODS-C57BL6J mice were fed a HFD or a normal diet (ND) for 3 or 15 weeks. Plasma insulin and glucose levels in vivo were assessed by intraperitoneal glucose tolerance test. Insulin secretion in vitro was studied using static incubations and a perfused pancreas preparation. Membrane currents, electrical activity, and exocytosis were examined by patch-clamp technique measurements. Intracellular calcium concentration ([Ca(2+)](i)) was measured by microfluorimetry. Total internal reflection fluorescence microscope (TIRFM) was used for optical imaging of exocytosis and submembrane depolarization-evoked [Ca(2+)](i). The functional data were complemented by analyses of histology and gene transcription. RESULTS After 15 weeks, but not 3 weeks, mice on HFD exhibited hyperglycemia and hypoinsulinemia. Pancreatic islet content and beta-cell area increased 2- and 1.5-fold, respectively. These changes correlated with a 20-50% reduction of glucose-induced insulin secretion (normalized to insulin content). The latter effect was not associated with impaired electrical activity or [Ca(2+)](i) signaling. Single-cell capacitance and TIRFM measurements of exocytosis revealed a selective suppression (>70%) of exocytosis elicited by short (50 ms) depolarization, whereas the responses to longer depolarizations were (500 ms) less affected. The loss of rapid exocytosis correlated with dispersion of Ca(2+) entry in HFD beta-cells. No changes in gene transcription of key exocytotic protein were observed. CONCLUSIONS HFD results in reduced insulin secretion by causing the functional dissociation of voltage-gated Ca(2+) entry from exocytosis. These observations suggest a novel explanation to the well-established link between obesity and diabetes. Diabetes 59:1192-1201, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbances in the regulation of cytosolic calcium (Ca(2+)) concentration play a key role in the vascular dysfunction associated with arterial hypertension. Stromal interaction molecules (STIMs) and Orai proteins represent a novel mechanism to control store-operated Ca(2+) entry. Although STIMs act as Ca(2+) sensors for the intracellular Ca(2+) stores, Orai is the putative pore-forming component of Ca(2+) release-activated Ca(2+) channels at the plasma membrane. We hypothesized that augmented activation of Ca(2+) release-activated Ca(2+)/Orai-1, through enhanced activity of STIM-1, plays a role in increased basal tonus and vascular reactivity in hypertensive animals. Endothelium-denuded aortic rings from Wistar-Kyoto and stroke-prone spontaneously hypertensive rats were used to evaluate contractions because of Ca(2+) influx. Depletion of intracellular Ca(2+) stores, which induces Ca(2+) release-activated Ca(2+) activation, was performed by placing arteries in Ca(2+) free-EGTA buffer. The addition of the Ca(2+) regular buffer produced greater contractions in aortas from stroke-prone spontaneously hypertensive rats versus Wistar-Kyoto rats. Thapsigargin (10 mu mol/L), an inhibitor of the sarcoplasmic reticulum Ca(2+) ATPase, further increased these contractions, especially in stroke-prone spontaneously hypertensive rat aorta. Addition of the Ca(2+) release-activated Ca(2+) channel inhibitors 2-aminoethoxydiphenyl borate (100 mu mol/L) or gadolinium (100 mu mol/L), as well as neutralizing antibodies to STIM-1 or Orai-1, abolished thapsigargin-increased contraction and the differences in spontaneous tone between the groups. Expression of Orai-1 and STIM-1 proteins was increased in aorta from stroke-prone spontaneously hypertensive rats when compared with Wistar-Kyoto rats. These results support the hypothesis that both Orai-1 and STIM-1 contribute to abnormal vascular function in hypertension. Augmented activation of STIM-1/Orai-1 may represent the mechanism that leads to impaired control of intracellular Ca(2+) levels in hypertension. (Hypertension. 2009; 53[part 2]: 409-416.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subtle quantum properties offer exciting new prospects in optical communications. For example, quantum entanglement enables the secure exchange of cryptographic keys(1) and the distribution of quantum information by teleportation(2,3). Entangled bright beams of light are increasingly appealing for such tasks, because they enable the use of well-established classical communications techniques(4). However, quantum resources are fragile and are subject to decoherence by interaction with the environment. The unavoidable losses in the communication channel can lead to a complete destruction of entanglement(5-8), limiting the application of these states to quantum-communication protocols. We investigate the conditions under which this phenomenon takes place for the simplest case of two light beams, and analyse characteristics of states which are robust against losses. Our study sheds new light on the intriguing properties of quantum entanglement and how they may be harnessed for future applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a technique to build, within a dissipative bosonic network, decoherence-free channels (DFCs): a group of normal-mode oscillators with null effective damping rates. We verify that the states protected within the DFC define the well-known decoherence-free subspaces (DFSs) when mapped back into the natural network oscillators. Therefore, our technique to build protected normal-mode channels turns out to be an alternative way to build DFSs, which offers advantages over the conventional method. It enables the computation of all the network-protected states at once, as well as leading naturally to the concept of the decoherence quasi-free subspace (DQFS), inside which a superposition state is quasi-completely protected against decoherence. The concept of the DQFS, weaker than that of the DFS, may provide a more manageable mechanism to control decoherence. Finally, as an application of the DQFSs, we show how to build them for quasi-perfect state transfer in networks of coupled quantum dissipative oscillators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischemia followed by reperfusion is known to negatively affect mitochondrial function by inducing a deleterious condition termed mitochondrial permeability transition. Mitochondrial permeability transition is triggered by oxidative stress, which occurs in mitochondria during ischemia-reperfusion as a result of lower antioxidant defenses and increased oxidant production. Permeability transition causes mitochondrial dysfunction and can ultimately lead to cell death. A drug able to minimize mitochondrial damage induced by ischemia-reperfusion may prove to be clinically effective. We aimed to analyze the effects of nicorandil, an ATP-sensitive potassium channel agonist and vasodilator, on mitochondrial function of rat hearts and cardiac HL-1 cells submitted to ischemia-reperfusion. Nicorandil decreased mitochondrial swelling and calcium uptake. It also decreased reactive oxygen species formation and thiobarbituric acid reactive substances levels, a lipid peroxidation biomarker. We thus confirm previous reports that nicorandil inhibits mitochondrial permeability transition and demonstrate that nicorandil inhibits this process by preventing oxidative damage and mitochondrial calcium overload induced by ischemia-reperfusion, resulting in improved cardiomyocyte viability. These results may explain the good clinical results obtained when using nicorandil in the treatment of ischemic heart disease.