4 resultados para COUPLED-WAVE ANALYSIS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small local earthquakes from two aftershock sequences in Porto dos GaA(0)chos, Amazon craton-Brazil, were used to estimate the coda wave attenuation in the frequency band of 1 to 24 Hz. The time-domain coda-decay method of a single backscattering model is employed to estimate frequency dependence of the quality factor (Q (c)) of coda waves modeled usingwhere Q (0) is the coda quality factor at frequency of 1 Hz and eta is the frequency parameter. We also used the independent frequency model approach (Morozov, Geophys J Int, 175:239-252, 2008), based in the temporal attenuation coefficient, chi(f) instead of Q(f), given by the equation for the calculation of the geometrical attenuation (gamma) and effective attenuation Q (c) values have been computed at central frequencies (and band) of 1.5 (1-2), 3.0 (2-4), 6.0 (4-8), 9.0 (6-12), 12 (8-16), and 18 (12-24) Hz for five different datasets selected according to the geotectonic environment as well as the ability to sample shallow or deeper structures, particularly the sediments of the Parecis basin and the crystalline basement of the Amazon craton. For the Parecis basin for the surrounding shield and for the whole region of Porto dos GaA(0)chos Using the independent frequency model, we found: for the cratonic zone, gamma = 0.014 s (-aEuro parts per thousand 1), nu a parts per thousand 1.12; for the basin zone with sediments of similar to 500 m, gamma = 0.031 s (-aEuro parts per thousand 1), nu a parts per thousand 1.27; and for the Parecis basin with sediments of similar to 1,000 m, gamma = 0.047 s (-aEuro parts per thousand 1), nu a parts per thousand 1.42. Analysis of the attenuation factor (Q (c)) for different values of the geometrical spreading parameter (nu) indicated that an increase of nu generally causes an increase in Q (c), both in the basin as well as in the craton. But the differences in the attenuation between different geological environments are maintained for different models of geometrical spreading. It was shown that the energy of coda waves is attenuated more strongly in the sediments, (in the deepest part of the basin), than in the basement, (in the craton). Thus, the coda wave analysis can contribute to studies of geological structures in the upper crust, as the average coda quality factor is dependent on the thickness of sedimentary layer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this work is to study the potentialities in the phase-shifting real-time holographic interferometry using photorefractive crystals as the recording medium for wave-optics analysis in optical elements and non-linear optical materials. This technique was used for obtaining quantitative measurements from the phase distributions of the wave front of lens and lens systems along the propagation direction with in situ visualization, monitoring and analysis in real time. (C) 2008 Elsevier GmbH. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the mu g m(-3) range) and their variations with sampling site and time In this work a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE) a quick separation technique that requires nothing more than some nanoliters of sample and when combined with capacitively coupled contactless conductometric detection (C(4)D) is particularly favorable for ionic species that do not absorb in the UV-vis region like the target analytes formaldehyde formic acid acetic acid and ammonium The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry s constant such as formaldehyde and carboxylic acids or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8 3 nLs(-1)) while the sample was aspirated through the annular gap of the concentric tubes at 25 mLs(-1) A second unit in all similar to the CMDS was operated as a capillary membrane diffusion emitter (CMDE) generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS The fluids of the system were driven with inexpensive aquarium air pumps and the collected samples were stored in vials cooled by a Peltier element Complete protocols were developed for the analysis in air of NH(3) CH(3)COOH HCOOH and with a derivatization setup CH(2)O by associating the CMDS collection with the determination by CE-C(4)D The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot s reaction Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW) All techniques and methods of this work are in line with the green analytical chemistry trends (C) 2010 Elsevier B V All rights reserved

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the development and evaluation of a sequential injection method to automate the determination of methyl parathion by square wave adsorptive cathodic stripping voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. Accumulation and stripping steps are made in the sample medium conditioned with 40 mmol L-1 Britton-Robinson buffer (pH 10) in 0.25 mol L-1 NaNO3. The homogenized mixture is injected at a flow rate of 10 mu Ls(-1) toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode. After a suitable deposition time, the flow is stopped and the potential is scanned from -0.3 to -1.0 V versus Ag/AgCl at frequency of 250 Hz and pulse height of 25 mV The linear dynamic range is observed for methyl parathion concentrations between 0.010 and 0.50 mgL(-1), with detection and quantification limits of 2 and 7 mu gL(-1), respectively. The sampling throughput is 25 h(-1) if the in line standard addition and sample conditioning protocols are followed, but this frequency can be increased up to 61 h(-1) if the sample is conditioned off-line and quantified using an external calibration curve. The method was applied for determination of methyl parathion in spiked water samples and the accuracy was evaluated either by comparison to high performance liquid chromatography with UV detection, or by the recovery percentages. Although no evidences of statistically significant differences were observed between the expected and obtained concentrations, because of the susceptibility of the method to interference by other pesticides (e.g., parathion, dichlorvos) and natural organic matter (e.g., fulvic and humic acids), isolation of the analyte may be required when more complex sample matrices are encountered. (C) 2007 Elsevier B.V. All rights reserved.