8 resultados para COMPUTARIZED TOMOGRAPHY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Introduction: The aim of this study was to evaluate the accuracy of two imaging methods in diagnosing apical periodontitis (AP) using histopathological findings as a gold standard. Methods: The periapex of 83 treated or untreated roots of dogs` teeth was examined using periapical radiography (PR), cone-beam computed tomography (CBCT) scans, and histology. Sensitivity, specificity, predictive values, and accuracy of PR and CBCT diagnosis were calculated. Results: PR detected AP in 71% of roots, a CBCT scan detected AP in 84%, and AP was histologically diagnosed in 93% (p = 0.001). Overall, sensitivity was 0.77 and 0.91 for PR and CBCT, respectively. Specificity was 1 for both. Negative predictive value was 0.25 and 0.46 for PR and CBCT, respectively. Positive predictive value was 1 for both. Diagnostic accuracy (true positives + true negatives) was 0.78 and 0.92 for PR and CBCT (p = 0.028), respectively. Conclusion: A CBCT scan was more sensitive in detecting AP compared with PR, which was more likely to miss AP when it was still present. (J Endod 2009;35:1009-1012)
Resumo:
The purpose of this study was to compare the favorable outcome of root canal treatment determined by periapical radiographs (PRs) and cone beam computed tomography (CBCT) scans. Ninety-six roots of dogs` teeth were used to form four groups (n = 24). In group 1, root canal treatments were performed in healthy teeth. Root canals in groups 2 through 4 were infected until apical periodontitis (AP) was radiographically confirmed. Roots with AP were treated by one-visit therapy in group 2, by two-visit therapy in group 3, and left untreated in group 4. The radiolucent area in the PRs and the volume of CBCT-scanned periapical lesions were measured before and 6 months after the treatment. In groups 1, 2, and 3, a favorable outcome (lesions absent or reduced) was shown in 57 (79%) roots using PRs but only in 25 (35%) roots using CBCT scans (p = 0.0001). Unfavorable outcomes occurred more frequently after one-visit therapy than two-visit therapy when determined by CBCT scans (p = 0.023). (J Endod 2009; 35:723-726)
Resumo:
We present models for the upper-mantle velocity structure beneath SE and Central Brazil using independent tomographic inversions of P- and S-wave relative arrival-time residuals (including core phases) from teleseismic earthquakes. The events were recorded by a total of 92 stations deployed through different projects, institutions and time periods during the years 1992-2004. Our results show correlations with the main tectonic structures and reveal new anomalies not yet observed in previous works. All interpretations are based on robust anomalies, which appear in the different inversions for P-and S-waves. The resolution is variable through our study volume and has been analyzed through different theoretical test inversions. High-velocity anomalies are observed in the western portion of the Sao Francisco Craton, supporting the hypothesis that this Craton was part of a major Neoproterozoic plate (San Franciscan Plate). Low-velocity anomalies beneath the Tocantins Province (mainly fold belts between the Amazon and Sao Francisco Cratons) are interpreted as due to lithospheric thinning, which is consistent with the good correlation between intraplate seismicity and low-velocity anomalies in this region. Our results show that the basement of the Parana Basin is formed by several blocks, separated by suture zones, according to model of Milani & Ramos. The slab of the Nazca Plate can be observed as a high-velocity anomaly beneath the Parana Basin, between the depths of 700 and 1200 km. Further, we confirm the low-velocity anomaly in the NE area of the Parana Basin which has been interpreted by VanDecar et al. as a fossil conduct of the Tristan da Cunha Plume related to the Parana flood basalt eruptions during the opening of the South Atlantic.
Resumo:
Astronomy has evolved almost exclusively by the use of spectroscopic and imaging techniques, operated separately. With the development of modern technologies, it is possible to obtain data cubes in which one combines both techniques simultaneously, producing images with spectral resolution. To extract information from them can be quite complex, and hence the development of new methods of data analysis is desirable. We present a method of analysis of data cube (data from single field observations, containing two spatial and one spectral dimension) that uses Principal Component Analysis (PCA) to express the data in the form of reduced dimensionality, facilitating efficient information extraction from very large data sets. PCA transforms the system of correlated coordinates into a system of uncorrelated coordinates ordered by principal components of decreasing variance. The new coordinates are referred to as eigenvectors, and the projections of the data on to these coordinates produce images we will call tomograms. The association of the tomograms (images) to eigenvectors (spectra) is important for the interpretation of both. The eigenvectors are mutually orthogonal, and this information is fundamental for their handling and interpretation. When the data cube shows objects that present uncorrelated physical phenomena, the eigenvector`s orthogonality may be instrumental in separating and identifying them. By handling eigenvectors and tomograms, one can enhance features, extract noise, compress data, extract spectra, etc. We applied the method, for illustration purpose only, to the central region of the low ionization nuclear emission region (LINER) galaxy NGC 4736, and demonstrate that it has a type 1 active nucleus, not known before. Furthermore, we show that it is displaced from the centre of its stellar bulge.
Resumo:
We report the use of optical coherence tomography (OCT) to detect and quantify demineralization process induced by S. mutans biofilm in third molars human teeth. Artificial lesions were induced by a S. mutans microbiological culture and the samples (N = 50) were divided into groups according to the demineralization time: 3, 5, 7, 9, and 11days. The OCT system was implemented using a light source delivering an average power of 96 mu W in the sample arm, and spectral characteristics allowing 23 mu m of axial resolution. The images were produced with lateral scans step of 10 pan and analyzed individually. As a result of the evaluation of theses images, lesion depth was calculated as function of demineralization time. The depth of the lesion in the root dentine increased from 70 pm to 230,urn (corrected by the enamel refraction index, 1.62 @ 856 nm), depending of exposure time. The lesion depth in root dentine was correlated to demineralization time, showing that it follows a geometrical progression like a bacteria growth law. [GRAPHICS] Progression of lesion depth in root dentine as function of exposure time, showing that it follows a geometrical progression like a bacteria growth law(C) 2009 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
In this work we evaluate the effectiveness of computed tomography images as a tool to determine magnetic nanoparticle biodistribution over biological tissues. For this purpose, tomography images for magnetic nanoparticles, composed of Fe(3)O(4), coated with 2,3-dimercaptosuccinic acid (DMSA), were generated at several material concentrations. The comparison of CT numbers, calculated from these images generated at clinical conditions, with typical CT numbers for biological tissues, shows that the detection of nanoparticle in most tissues is only possible for high material concentrations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Purpose: We present an iterative framework for CT reconstruction from transmission ultrasound data which accurately and efficiently models the strong refraction effects that occur in our target application: Imaging the female breast. Methods: Our refractive ray tracing framework has its foundation in the fast marching method (FNMM) and it allows an accurate as well as efficient modeling of curved rays. We also describe a novel regularization scheme that yields further significant reconstruction quality improvements. A final contribution is the development of a realistic anthropomorphic digital breast phantom based on the NIH Visible Female data set. Results: Our system is able to resolve very fine details even in the presence of significant noise, and it reconstructs both sound speed and attenuation data. Excellent correspondence with a traditional, but significantly more computationally expensive wave equation solver is achieved. Conclusions: Apart from the accurate modeling of curved rays, decisive factors have also been our regularization scheme and the high-quality interpolation filter we have used. An added benefit of our framework is that it accelerates well on GPUs where we have shown that clinical 3D reconstruction speeds on the order of minutes are possible.