29 resultados para CATALYTIC ACTIVITY

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to investigate the catalytic activity of basic aminopeptidase (APB) and its association with periarticular edema and circulating tumor necrosis factor (TNF)-alpha and type II collagen (CII) antibodies (AACII) in a rat model of rheumatoid arthritis (RA) induced by CII (CIA). Edema does not occur in part of CH-treated, even when AACII is higher than in control. TNF-alpha is detectable only in edematous CII-treated. APB in synovial membrane is predominantly a membrane-bound activity also present in soluble form and with higher activity in edematous than in non-edematous CH-treated or control. Synovial fluid and blood plasma have lower APB in non-edematous than in edematous CII-treated or control. In peripheral blood mononuclear cells (PBMCs) the highest levels of APB are found in soluble form in control and in membrane-bound form in non-edematous CII-treated. CII treatment distinguishes two categories of rats: one with arthritic edema, high AACII, detectable TNF-alpha, high soluble and membrane-bound APB in synovial membrane and low APB in the soluble fraction of PBMCs, and another without edema and with high AACII, undetectable TNF-alpha, low APB in the synovial fluid and blood plasma and high APB in the membrane-bound fraction of PBMCs. Data suggest that APB and CIA are strongly related. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS). N(2) sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe(2+) present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples` average pore diameter was around 12.0 nm and BET specific surface area was of 680 m(2) g(-1). Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 degrees C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1. Fe(2)O(3) and Fe/FDU-1 prepared with higher pH of 2 and 3.5. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The catalytic hydrodechlorination (HDC) reaction, which is an attractive abatement process for chlorinated organic wastes, was studied over a magnetically recoverable supported Pd(0) catalyst. We investigated the most favorable reaction conditions under which to obtain the highest substrate conversion rates while preserving the catalyst properties and morphology. Sodium hydroxide, triethylamine and buffered solutions were used as proton scavengers in the HDC of chlorobenzene under mild conditions. It was observed that sodium hydroxide caused corrosion of the silica support, triethylamine in 2-propanol preserved the morphology of the catalyst which could be recycled for up to five successive H DC reactions, and aqueous buffer solutions preserved the catalyst morphology and the catalytic activity for up to four successive HDC reactions. The use of buffer solutions to neutralize the HCl formed during the HDC reaction is an interesting, less aggressive, alternative approach to HDC reactions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here we present the catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) to less toxic mixtures of saturated and partial unsaturated polycyclic hydrocarbons under mild reaction conditions using a magnetically recoverable rhodium catalyst and molecular hydrogen as the exclusive H source. The catalyst is easily recovered after each reaction by placing a permanent magnet on the reactor wall and it can be reused in successive runs without any significant loss of catalytic activity. As an example, anthracene was totally converted into the saturated polycyclic hydrocarbon form (ca. 60%) and the partially hydrogenated form, 1,2,3,4,5,6,7,8-octahydroanthracene (ca. 40%). The catalyst operates in a broad range of temperature and H(2) pressure in both organic and aqueous/organic solutions of anthracene and it also exhibits significant activity at low substrate concentrations (20 ppm). This can be an efficient recycling process for hydrogenation of PAHs present in contaminated fluid waste streams. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A major challenge for producing low cost biosensors based on nanostructured films with control of molecular architectures is to preserve the catalytic activity of the immobilized biomolecules. In this study, we show that catalase (HRP) keeps its activity if immobilized in Langmuir-Blodgett (LB) films of dipalmitoyl phosphatidylglycerol (DPPG). The incorporation of catalase into a DPPG monolayer at the at interface was demonstrated with surface pressure and surface potential isotherms, in addition to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). According to the PM-IRRAS data. catalase was not denatured upon adsorption on a preformed DPPG monolayer and could be transferred onto a solid substrate. The catalytic activity of catalase in a mixed LB film with DPPG was ca. 13% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allows catalase-containing LB films to be used in sensing hydrogen peroxide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Detailed catalytic roles of the conserved Glu323, Asp460, and Glu519 of Arthrobacter sp. S37 inulinase (EnIA), a member of the glycoside hydrolase family 32, were investigated by site-directed mutagenesis and pH-dependence studies of the enzyme efficiency and homology modeling were carried out for EnIA and for D460E mutant. The enzyme efficiency (k(cat)/K-m) of the E323A and E519A mutants was significantly lower than that of the wild-type due to a substantial decrease in k(cat), but not due to variations in K-m, consistent with their putative roles as nucleophile and acid/base catalyst, respectively. The D460A mutant was totally inactive, whereas the D460E and D460N mutants were active to some extent, revealing Asp460 as a catalytic residue and demonstrating that the presence of a carboxylate group in this position is a prerequisite for catalysis. The pH-dependence studies indicated that the pK(a) of the acid/base catalyst decreased from 9.2 for the wild-type enzyme to 7.0 for the D460E mutant, implicating Asp460 as the residue that interacts with the acid/base catalyst Glu519 and elevates its pK(a). Homology modeling and molecular dynamics simulation of the wild-type enzyme and the D460E mutant shed light on the structural roles of Glu323, Asp460, and Glu519 in the catalytic activity of the enzyme. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein (western blotting) and gene (PCR) expressions, catalytic activity of puromycin-insensitive membrane-bound neutral aminopeptidase (APM/CD13) and in situ regional distribution of CD13 and FOS immunoreactivity (it) were evaluated in the hypothalamus of monosodium glutamate obese (MSG) and/or food deprived (FD) rats in order to investigate their possible interplay with metabolic functions. Variations in protein and gene expressions of CD13 relative to controls coincided in the hypothalamus of MSG and MSG-FD (decreased 2- to 17-fold). Compared with controls, the reduction of hypothalamic CD13 content reflected a negative balance in its regional distribution in the supraoptic, paraventricular, periventricular and arcuate nuclei. CD13-ir increased in the supraoptic nucleus in MSG (2.5-fold) and decreased in the paraventricular nucleus (2-fold) together with FOS-ir (1.5-fold) in FD. In MSG-FD. FOS-ir decreased (7-fold) in the paraventricular nucleus, while CD13-ir decreased in the periventricular (5.6-fold) and the arcuate (3.7-fold) nuclei. It was noteworthy that all these changes of CD13 were not related to catalytic activity of APM. Data suggested that hypothalamic CD13 plays a role in the regulation of energy metabolism not by means of APM enzyme activity. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the microvillar microdomain of the kidney brush border, sodium hydrogen exchanger type 3 (NHE3) exists in physical complexes with the serine protease dipeptidyl peptidase IV (DPPIV). The purpose of this study was to explore the functional relationship between NHE3 and DPPIV in the intact proximal tubule in vivo. To this end, male Wistar rats were treated with an injection of the reversible DPPIV inhibitor Lys [Z(NO(2))]-pyrrolidide (I40; 60 mg center dot kg(-1)center dot day(-1) ip) for 7 days. Rats injected with equal amounts of the noninhibitory compound Lys[ Z(NO(2))]-OH served as controls. Na(+) -H(+) exchange activity in isolated microvillar membrane vesicles was 45 +/- 5% decreased in rats treated with I40. Membrane fractionation studies using isopycnic centrifugation revealed that I40 provoked redistribution of NHE3 along with a small fraction of DPPIV from the apical enriched microvillar membranes to the intermicrovillar microdomain of the brush border. I40 significantly increased urine output ( 67 +/- 9%; P < 0.01), fractional sodium excretion ( 63 +/- 7%; P < 0.01), as well as lithium clearance ( 81 +/- 9%; P < 0.01), an index of end-proximal tubule delivery. Although not significant, a tendency toward decreased blood pressure and plasma pH/HCO(3)(-) was noted in I40-treated rats. These findings indicate that inhibition of DPPIV catalytic activity is associated with inhibition of NHE3-mediated NaHCO(3) reabsorption in rat renal proximal tubule. Inhibition of apical Na(+) -H(+) exchange is due to reduced abundance of NHE3 protein in the microvillar microdomain of the kidney brush border. Moreover, this study demonstrates a physiologically significant interaction between NHE3 and DPPIV in the intact proximal tubule in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We here report the preparation of supported palladium nanoparticles (NPs) stabilized by pendant phosphine groups by reacting a palladium complex containing the ligand 2-(diphenylphosphino)benzaldehyde with an amino-functionalized silica surface The Pd nanocatalyst is active for Suzuki cross-coupling reaction avoiding any addition of other sources of phosphine ligands The Pd intermediates and Pd NPs were characterized by solid-state nuclear magnetic resonance and transmission electron microscopy techniques The synthetic method was also applied to prepare magnetically recoverable Pd NPs leading to a catalyst that could be reused for up to 10 recycles In summary we gathered the advantages of heterogeneous catalysis magnetic separation and enhanced catalytic activity of palladium promoted by phosphine ligands to synthesize a new catalyst for Suzuki cross-coupling reactions The Pd NP catalyst prepared on the phosphine-functionalized support was more active and selective than a similar Pd NP catalyst prepared on an amino-functionalized support (C) 2010 Elsevier Inc All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New tetraruthenated manganese (III) porphyrins were synthesized and characterized (P-31 NMR, cyclic voltammetry, UV-Vis). This new system presents four units of cationic ``[RuCl(dppb)(X-bipy)](+)``. The electrochemical and catalytic properties of the central manganese (III) show dependence on the characteristics of the peripheral ruthenium complexes as evidenced by the Mn-(III)/Mn-(II) reduction potential. The catalytic oxidation reactions of olefins, cyclohexene and cyclohexane, were carried out in the presence of tetrapyridyl manganese (III) porphyrins containing cationic ruthenium complex and using iodosylbenzene as oxygen donor. The performance of these new tetraruthenated porphyrins systems were evaluated and compared with the manganese porphyrin. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three new homodinuclear complexes containing substituted phenolate-type ligands based on the N(5)O(2) donor (2-(N,N-Bis(2-pyridylmethyl)aminomethyl)-6-(N`,N`-(2-hydroxybenzyl)(2-pyridylmethyl))aminomethyl)-4-methylphenol (H(2)L-H) were synthesized and characterized by X-ray crystallography. Potentiometric titration studies in 70% (v/v) aqueous ethanol show that all three complexes exhibit a common {Cu(II)(mu-phenoxo)(mu-OH)Cu(II)(OH)} core in solution. Kinetic studies on the oxidation reaction of 3,5-di-tert-butylcatechol revealed that the catalytic activity of the metal complexes increases toward the ligand containing an electron-donating group. In addition, these complexes also carried out DNA cleavage by hydrolytic and oxidative pathways. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-dependent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-DL-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.