8 resultados para CALCIUM CHANNEL BLOCKER OVERDOSE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of verapamil modulating collagen biosynthesis have prompted us to study the role of this drug in cultured fibroblasts. In this article, we describe the effects of verapamil on fibroblast behaviour, with special emphasis to phenotypic modifications, reorganisation of actin filaments and secretion of MMP1. Human dermal fibroblasts treated with 50-mu M verapamil changed their normal spindle-shaped morphology to stellate. Treated cells showed discrete reorganisation of actin filaments, as revealed by fluorescein isothiocyanate (FITC)-phalloidin staining and confocal microscopy. We hypothesised that these effects would be associated to lower levels of cytosolic Ca(2+). Indeed, short time loading with calcium green confirmed that verapamil-treated fibroblasts exhibited lower intracellular calcium levels compared to controls. We also observed that verapamil increases the secretion of MMP1 in cultured fibroblasts, as demonstrated by zymography, specific substrate assays and immunoblot. The morphological alterations induced by verapamil are neither cytotoxic nor associated with other dramatic cytoskeleton alterations. Thus we may conclude that this drug enhances collagenase secretion and does not disrupt the major tracks necessary to deliver these enzymes in the extracellular space. The present results suggested that verapamil could be used at physiological levels to enhance collagen I breakdown, and maybe considered a potential candidate for intralesional therapy of wound healing and fibrocontractive diseases. (C) 2010 Elsevier Ltd and ISBI. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gomesin is an antimicrobial peptide isolated from hemocytes of a common Brazilian tarantula spider named Acanthoscurriagomesiana. This peptide exerts antitumor activity in vitro and in vivo by an unknown mechanism. In this study, the cytotoxic mechanism of gomesin in human neuroblastoma SH-SY5Y and rat pheochromocytoma PC12 cells was investigated. Gomesin induced necrotic cell death and was cytotoxic to SH-SY5Y and PC12 cells. The peptide evoked a rapid and transient elevation of intracellular calcium levels in Fluo-4-AM loaded PC12 cells, which was inhibited by nimodipine, an L-type calcium channel blocker. Preincubation with nimodipine also inhibited cell death induced by gomesin in SH-SY5Y and PC12 cells. Gomesin-induced cell death was prevented by the pretreatment with MAPK/ERK, PKC or PI3K inhibitors, but not with PKA inhibitor. In addition, gomesin generated reactive oxygen species (ROS) in SH-SY5Y cells, which were blocked with nimodipine and MAPK/ERK, PKC or PI3K inhibitors. Taken together, these results suggest that gomesin could be a useful anticancer agent, which mechanism of cytotoxicity implicates calcium entry through L-type calcium channels, activation of MAPK/ERK, PKC and PI3K signaling as well as the generation of reactive oxygen species. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP3-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of scrotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solid graphite-polyurethane composite electrode has been used to determine release profiles of verapamil, a calcium-channel blocker. The electro-oxidation process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy and showed no adsorption of analyte or oxidation products, unlike at other carbon-based electrodes. Quantification gave linear ranges up to 40molL-1 with cyclic voltammetry and detection limits of 0.7molL-1 by differential pulse and square-wave voltammetry. Commercial product samples were successfully analyzed with results equal to those from spectrophotometry. Because no electrode surface renewal is needed, this electrode material has many advantages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we described the expression and characterization of the recombinant toxin LTx2, which was previously isolated from the venomous cDNA library of a Brazilian spider, Lasiodora sp. (Mygalomorphae, Theraphosidae). The recombinant toxin found in the soluble and insoluble fractions was purified by reverse phase high-performance liquid chromatography (HPLC). Ca2+ imaging analysis revealed that the recombinant LTx2 acts on calcium channels of BC3H1 cells, blocking L-type calcium channels. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to analyze the contribution of nitric oxide, prostacyclin and endothelium-dependent hyperpolarizing factor to endothelium-dependent vasodilation induced by acetylcholine in rat aorta from control and ouabain-induced hypertensive rats. Preincubation with the nitric oxide synthase inhibitor N-omega-nitro-L-arginine methyl esther (L-NAME) inhibited the vasodilator response to acetylcholine in segments from both groups but to a greater extent in segments from ouabain-treated rats. Basal and acetylcholine-induced nitric oxide release were higher in segments from ouabain-treated rats. Preincubation with the prostacyclin synthesis Inhibitor tranylcypromine or with the cyclooxygenase inhibitor indomethacin inhibited the vasodilator response to acetylcholine in aortic segments front both groups. The Ca(2+)-dependent potassium channel blocker charybdotoxin inhibited the vasodilator response to acetylcholine only In segments from control rats. These results indicate that hypertension induced by chronic ouabain treatment is accompanied by increased endothelial nitric oxide participation and impaired endothelium-dependent hyperpolarizing factor contribution In acetylcholine-induced relaxation. These effects might explain the lack of effect of ouabain treatment oil acetylcholine responses in rat aorta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isoforms of the Na+/H+ exchanger present in T84 human colon cells were identified by functional and molecular methods. Cell pH was measured by fluorescence microscopy using the probe BCECF. Based on the pH recovery after an ammonium pulse and determination of buffering capacity of these cells, the rate of H+ extrusion (J(H)) was 3.68 mM/min. After the use of the amiloride derivative HOE-694 at 25 mu M, which inhibits the isoforms NHE1 and NHE2, there remained 43% of the above transport rate, the nature of which was investigated. Evidence of the presence of NHE1, NHE2, and NHE4 was obtained by reverse transcriptase polymerase chain reaction (RT-PCR) (mRNA) and Western blot. There was no decrease of J(H) by the NHE3 inhibitor S3226 (1 mu M) and no evidence of this isoform by RT-PCR was found. The following functional evidence for the presence of NHE4 was obtained: 25 mu M EIPA abolished J(H) entirely, but NHE4 was not inhibited at 10 mu M; substitution of Na by K increased the remainder, a property of NHE4; hypertonicity also increased this fraction of J(H). Cl--dependent NHE was not detected: in 0 Cl- solutions J(H) was increased and not reduced. In 0 Cl- cell volume decreased significantly, which was abolished by the Cl- channel blocker NPPB, indicating that the 0 Cl- effect was because of reduction of cell volume. In conclusion, T84 human colon cells contain three isoforms of the Na+/H+ exchanger, NHE1, NHE2, and NHE4, but not the Cl-dependent NHE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disturbances in the regulation of cytosolic calcium (Ca(2+)) concentration play a key role in the vascular dysfunction associated with arterial hypertension. Stromal interaction molecules (STIMs) and Orai proteins represent a novel mechanism to control store-operated Ca(2+) entry. Although STIMs act as Ca(2+) sensors for the intracellular Ca(2+) stores, Orai is the putative pore-forming component of Ca(2+) release-activated Ca(2+) channels at the plasma membrane. We hypothesized that augmented activation of Ca(2+) release-activated Ca(2+)/Orai-1, through enhanced activity of STIM-1, plays a role in increased basal tonus and vascular reactivity in hypertensive animals. Endothelium-denuded aortic rings from Wistar-Kyoto and stroke-prone spontaneously hypertensive rats were used to evaluate contractions because of Ca(2+) influx. Depletion of intracellular Ca(2+) stores, which induces Ca(2+) release-activated Ca(2+) activation, was performed by placing arteries in Ca(2+) free-EGTA buffer. The addition of the Ca(2+) regular buffer produced greater contractions in aortas from stroke-prone spontaneously hypertensive rats versus Wistar-Kyoto rats. Thapsigargin (10 mu mol/L), an inhibitor of the sarcoplasmic reticulum Ca(2+) ATPase, further increased these contractions, especially in stroke-prone spontaneously hypertensive rat aorta. Addition of the Ca(2+) release-activated Ca(2+) channel inhibitors 2-aminoethoxydiphenyl borate (100 mu mol/L) or gadolinium (100 mu mol/L), as well as neutralizing antibodies to STIM-1 or Orai-1, abolished thapsigargin-increased contraction and the differences in spontaneous tone between the groups. Expression of Orai-1 and STIM-1 proteins was increased in aorta from stroke-prone spontaneously hypertensive rats when compared with Wistar-Kyoto rats. These results support the hypothesis that both Orai-1 and STIM-1 contribute to abnormal vascular function in hypertension. Augmented activation of STIM-1/Orai-1 may represent the mechanism that leads to impaired control of intracellular Ca(2+) levels in hypertension. (Hypertension. 2009; 53[part 2]: 409-416.)