7 resultados para Binomial mixture model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
P>In the context of either Bayesian or classical sensitivity analyses of over-parametrized models for incomplete categorical data, it is well known that prior-dependence on posterior inferences of nonidentifiable parameters or that too parsimonious over-parametrized models may lead to erroneous conclusions. Nevertheless, some authors either pay no attention to which parameters are nonidentifiable or do not appropriately account for possible prior-dependence. We review the literature on this topic and consider simple examples to emphasize that in both inferential frameworks, the subjective components can influence results in nontrivial ways, irrespectively of the sample size. Specifically, we show that prior distributions commonly regarded as slightly informative or noninformative may actually be too informative for nonidentifiable parameters, and that the choice of over-parametrized models may drastically impact the results, suggesting that a careful examination of their effects should be considered before drawing conclusions.Resume Que ce soit dans un cadre Bayesien ou classique, il est bien connu que la surparametrisation, dans les modeles pour donnees categorielles incompletes, peut conduire a des conclusions erronees. Cependant, certains auteurs persistent a negliger les problemes lies a la presence de parametres non identifies. Nous passons en revue la litterature dans ce domaine, et considerons quelques exemples surparametres simples dans lesquels les elements subjectifs influencent de facon non negligeable les resultats, independamment de la taille des echantillons. Plus precisement, nous montrons comment des a priori consideres comme peu ou non-informatifs peuvent se reveler extremement informatifs en ce qui concerne les parametres non identifies, et que le recours a des modeles surparametres peut avoir sur les conclusions finales un impact considerable. Ceci suggere un examen tres attentif de l`impact potentiel des a priori.
Resumo:
The deterpenation of bergamot essential oil can be performed by liquid liquid extraction using hydrous ethanol as the solvent. A ternary mixture composed of 1-methyl-4-prop-1-en-2-yl-cydohexene (limonene), 3,7-dimethylocta-1,6-dien-3-yl-acetate (linalyl acetate), and 3,7-dimethylocta-1,6-dien-3-ol (linalool), three major compounds commonly found in bergamot oil, was used to simulate this essential oil. Liquid liquid equilibrium data were experimentally determined for systems containing essential oil compounds, ethanol, and water at 298.2 K and are reported in this paper. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were lower than 0.0062 in all systems, indicating the good descriptive quality of the molecular models. To verify the effect of the water mass fraction in the solvent and the linalool mass fraction in the terpene phase on the distribution coefficients of the essential oil compounds, nonlinear regression analyses were performed, obtaining mathematical models with correlation coefficient values higher than 0.99. The results show that as the water content in the solvent phase increased, the kappa value decreased, regardless of the type of compound studied. Conversely, as the linalool content increased, the distribution coefficients of hydrocarbon terpene and ester also increased. However, the linalool distribution coefficient values were negatively affected when the terpene alcohol content increased in the terpene phase.
Resumo:
In this paper we introduce a parametric model for handling lifetime data where an early lifetime can be related to the infant-mortality failure or to the wear processes but we do not know which risk is responsible for the failure. The maximum likelihood approach and the sampling-based approach are used to get the inferences of interest. Some special cases of the proposed model are studied via Monte Carlo methods for size and power of hypothesis tests. To illustrate the proposed methodology, we introduce an example consisting of a real data set.
Resumo:
In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real dataset.
Resumo:
The main goal of this paper is to investigate a cure rate model that comprehends some well-known proposals found in the literature. In our work the number of competing causes of the event of interest follows the negative binomial distribution. The model is conveniently reparametrized through the cured fraction, which is then linked to covariates by means of the logistic link. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis in the proposed model. The procedure is illustrated with a numerical example.
Resumo:
Lyotropic nematics consisting of surfactant-cosurfactant water solutions may present a biaxial phase or direct U(+) <-> U(-) transitions, in different regions of the temperature-relative concentration phase diagram, for different systems and compositions. We propose that these may be related to changes of uniaxial micellar form, which may occur either smoothly or abruptly. Smooth change of cylinder-like into disc-like shapes requires a distribution of Maier-Saupe interaction constants and we consider two limiting cases for the distribution of forms: a single Gaussian and a double Gaussian. Alternatively, an abrupt change of form is described by a discontinuous distribution of interaction constants. Our results show that the dispersive distributions yield a biaxial phase, while an abrupt change of shape leads to coexistence of uniaxial phases. Fitting the theory to the experiment for the ternary system KL/decanol/D2O leads to transition lines in very good agreement with experimental results. In order to rationalise the results of the comparison, we analyse temperature and concentration form dependence, which connects micellar and experimental macroscopic parameters. Physically consistent variations of micellar asymmetry, amphiphile partitioning and volume are obtained. To the best of the authors` knowledge, this is the first truly statistical microscopic approach that is able to model experimentally observed lyotropic biaxial nematic phases.
A robust Bayesian approach to null intercept measurement error model with application to dental data
Resumo:
Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.