18 resultados para Binary Coding
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
It is believed that eta Carinae is actually a massive binary system, with the wind-wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of eta Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face eta Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of eta Carinae forms an angle of 29 degrees +/- 4 degrees with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about 5 degrees and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.
Resumo:
Many of the controversies around the concept of homology rest on the subjectivity inherent to primary homology propositions. Dynamic homology partially solves this problem, but there has been up to now scant application of it outside of the molecular domain. This is probably because morphological and behavioural characters are rich in properties, connections and qualities, so that there is less space for conflicting character delimitations. Here we present a new method for the direct optimization of behavioural data, a method that relies on the richness of this database to delimit the characters, and on dynamic procedures to establish character state identity. We use between-species congruence in the data matrix and topological stability to choose the best cladogram. We test the methodology using sequences of predatory behaviour in a group of spiders that evolved the highly modified predatory technique of spitting glue onto prey. The cladogram recovered is fully compatible with previous analyses in the literature, and thus the method seems consistent. Besides the advantage of enhanced objectivity in character proposition, the new procedure allows the use of complex, context-dependent behavioural characters in an evolutionary framework, an important step towards the practical integration of the evolutionary and ecological perspectives on diversity. (C) The Willi Hennig Society 2010.
Resumo:
The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1-/- mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Various popular machine learning techniques, like support vector machines, are originally conceived for the solution of two-class (binary) classification problems. However, a large number of real problems present more than two classes. A common approach to generalize binary learning techniques to solve problems with more than two classes, also known as multiclass classification problems, consists of hierarchically decomposing the multiclass problem into multiple binary sub-problems, whose outputs are combined to define the predicted class. This strategy results in a tree of binary classifiers, where each internal node corresponds to a binary classifier distinguishing two groups of classes and the leaf nodes correspond to the problem classes. This paper investigates how measures of the separability between classes can be employed in the construction of binary-tree-based multiclass classifiers, adapting the decompositions performed to each particular multiclass problem. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Several real problems involve the classification of data into categories or classes. Given a data set containing data whose classes are known, Machine Learning algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, performing the desired discrimination. Some learning techniques are originally conceived for the solution of problems with only two classes, also named binary classification problems. However, many problems require the discrimination of examples into more than two categories or classes. This paper presents a survey on the main strategies for the generalization of binary classifiers to problems with more than two classes, known as multiclass classification problems. The focus is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are combined to obtain the final prediction.
Resumo:
In this paper, we study binary differential equations a(x, y)dy (2) + 2b(x, y) dx dy + c(x, y)dx (2) = 0, where a, b, and c are real analytic functions. Following the geometric approach of Bruce and Tari in their work on multiplicity of implicit differential equations, we introduce a definition of the index for this class of equations that coincides with the classical Hopf`s definition for positive binary differential equations. Our results also apply to implicit differential equations F(x, y, p) = 0, where F is an analytic function, p = dy/dx, F (p) = 0, and F (pp) not equal aEuro parts per thousand 0 at the singular point. For these equations, we relate the index of the equation at the singular point with the index of the gradient of F and index of the 1-form omega = dy -aEuro parts per thousand pdx defined on the singular surface F = 0.
Resumo:
The use of liposomes to encapsulate materials has received widespread attention for drug delivery, transfection, diagnostic reagent, and as immunoadjuvants. Phospholipid polymers form a new class of biomaterials with many potential applications in medicine and research. Of interest are polymeric phospholipids containing a diacetylene moiety along their acyl chain since these kinds of lipids can be polymerized by Ultra-Violet (UV) irradiation to form chains of covalently linked lipids in the bilayer. In particular the diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DC8,9PC) can form intermolecular cross-linking through the diacetylenic group to produce a conjugated polymer within the hydrocarbon region of the bilayer. As knowledge of liposome structures is certainly fundamental for system design improvement for new and better applications, this work focuses on the structural properties of polymerized DC8,9PC:1,2-dimyristoyl-sn-glycero-3-phusphocholine (DMPC) liposomes. Liposomes containing mixtures of DC8,9PC and DMPC, at different molar ratios, and exposed to different polymerization cycles, were studied through the analysis of the electron spin resonance (ESR) spectra of a spin label incorporated into the bilayer, and the calorimetric data obtained from differential scanning calorimetry (DSC) studies. Upon irradiation, if all lipids had been polymerized, no gel-fluid transition would be expected. However, even samples that went through 20 cycles of UV irradiation presented a DSC band, showing that around 80% of the DC8,9PC molecules were not polymerized. Both DSC and ESR indicated that the two different lipids scarcely mix at low temperatures, however few molecules of DMPC are present in DC8,9PC rich domains and vice versa. UV irradiation was found to affect the gel fluid transition of both DMPC and DC8,9PC rich regions, indicating the presence of polymeric units of DC8,9PC in both areas, A model explaining lipids rearrangement is proposed for this partially polymerized system.
Resumo:
Burst firing is ubiquitous in nervous systems and has been intensively studied in central pattern generators (CPGs). Previous works have described subtle intraburst spike patterns (IBSPs) that, despite being traditionally neglected for their lack of relation to CPG motor function, were shown to be cell-type specific and sensitive to CPG connectivity. Here we address this matter by investigating how a bursting motor neuron expresses information about other neurons in the network. We performed experiments on the crustacean stomatogastric pyloric CPG, both in control conditions and interacting in real-time with computer model neurons. The sensitivity of postsynaptic to presynaptic IBSPs was inferred by computing their average mutual information along each neuron burst. We found that details of input patterns are nonlinearly and inhomogeneously coded through a single synapse into the fine IBSPs structure of the postsynaptic neuron following burst. In this way, motor neurons are able to use different time scales to convey two types of information simultaneously: muscle contraction (related to bursting rhythm) and the behavior of other CPG neurons (at a much shorter timescale by using IBSPs as information carriers). Moreover, the analysis revealed that the coding mechanism described takes part in a previously unsuspected information pathway from a CPG motor neuron to a nerve that projects to sensory brain areas, thus providing evidence of the general physiological role of information coding through IBSPs in the regulation of neuronal firing patterns in remote circuits by the CNS.
Resumo:
We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.
Resumo:
The design of translation invariant and locally defined binary image operators over large windows is made difficult by decreased statistical precision and increased training time. We present a complete framework for the application of stacked design, a recently proposed technique to create two-stage operators that circumvents that difficulty. We propose a novel algorithm, based on Information Theory, to find groups of pixels that should be used together to predict the Output Value. We employ this algorithm to automate the process of creating a set of first-level operators that are later combined in a global operator. We also propose a principled way to guide this combination, by using feature selection and model comparison. Experimental results Show that the proposed framework leads to better results than single stage design. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from a training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multilevel design approach to deal with the issue of designing large neighborhood-based operators. The main idea is inspired by stacked generalization (a multilevel classifier design approach) and consists of, at each training level, combining the outcomes of the previous level operators. The final operator is a multilevel operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperform the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multilevel approach to obtain better results.
Resumo:
We explicitly construct a stationary coupling attaining Ornstein`s (d) over bar -distance between ordered pairs of binary chains of infinite order. Our main tool is a representation of the transition probabilities of the coupled bivariate chain of infinite order as a countable mixture of Markov transition probabilities of increasing order. Under suitable conditions on the loss of memory of the chains, this representation implies that the coupled chain can be represented as a concatenation of i.i.d. sequences of bivariate finite random strings of symbols. The perfect simulation algorithm is based on the fact that we can identify the first regeneration point to the left of the origin almost surely.
Resumo:
We review several asymmetrical links for binary regression models and present a unified approach for two skew-probit links proposed in the literature. Moreover, under skew-probit link, conditions for the existence of the ML estimators and the posterior distribution under improper priors are established. The framework proposed here considers two sets of latent variables which are helpful to implement the Bayesian MCMC approach. A simulation study to criteria for models comparison is conducted and two applications are made. Using different Bayesian criteria we show that, for these data sets, the skew-probit links are better than alternative links proposed in the literature.
Resumo:
Let G be any of the (binary) icosahedral, generalized octahedral (tetrahedral) groups or their quotients by the center. We calculate the automorphism group Aut(G).
Resumo:
In the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A(-) is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A(-s) for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A(-s) for a simple binary (-1,1) superalgebra A.