9 resultados para Bifunctional Initiator

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chen LM, Zhao J, Musa-Aziz R, Pelletier MF, Drummond IA, Boron WF. Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel. Am J Physiol Regul Integr Comp Physiol 299: R1163-R1174, 2010. First published August 25, 2010; doi:10.1152/ajpregu.00319.2010.-The mammalian aquaporins AQP1, AQP4, and AQP5 have been shown to function not only as water channels but also as gas channels. Zebrafish have two genes encoding an AQP1 homologue, aqp1a and aqp1b. In the present study, we cloned the cDNA that encodes the zebrafish protein Aqp1a from the 72-h postfertilization (hpf) embryo of Danio rerio, as well as from the swim bladder of the adult. The deduced amino-acid sequence of aqp1a consists of 260 amino acids and is 59% identical to human AQP1. By analyzing the genomic DNA sequence, we identified four exons in the aqp1a gene. By in situ hybridization, aqp1a is expressed transiently in the developing vasculature and in erythrocytes from 16 to 48 h of development. Later, at 72 hpf, aqp1a is expressed in dermal ionocytes and in the swim bladder. Western blot analysis of adult tissues reveals that Aqp1a is most highly expressed in the eye and swim bladder. Xenopus oocytes expressing aqp1a have a channel-dependent (*) osmotic water permeability (P(f)*) that is indistinguishable from that of human AQP1. On the basis of the magnitude of the transient change in surface pH (Delta pHS) that were recorded as the oocytes were exposed to either CO(2) or NH(3), we conclude that zebrafish Aqp1a is permeable to both CO(2) and NH(3). The ratio (Delta pHS*)CO2/P(f)* is about half that of human AQP1, and the ratio (Delta pHS*)NH3/P(f)* is about one-quarter that of human AQP1. Thus, compared with human AQP1, zebrafish Aqp1a has about twice the selectivity for CO(2) over NH(3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe here a procedure to bridge the gap in the field of calixarene physicochemistry between solid-state atomic-resolution structural information and the liquid-state low-resolution thermodynamics and spectroscopic data. We use MD simulations to study the kinetics and energetics involved in the complexation of lower rim calix[4]arene derivatives (L), containing bidentate ester (1) and ketone (2) pendant groups, with acetonitrile molecule (MeCN) and Cd2+ and Pb2+ ions (M2+) in acetonitrile solution. On one hand, we found that the prior inclusion of MeCN into the calix to form a L(MeCN) adduct has only a weak effect in preorganizing the hydrophilic cavity toward metal ion binding. On the other hand, the strong ion-hydrophilic cavity interaction produces a wide open calix which enhances the binding of one MeCN molecule (allosteric effect) to stabilize the whole (M2+)1(MeCN) bifunctional complex. We reach two major conclusions: (i) the MD results for the (M2+)1(MeCN) binding are in close agreement with the ""endo"", fully encapsulated, metal complex found by X-ray diffraction and in vacuo MD calculations, and (ii) the MD structure for the more flexible 2 ligand, however, differs from the also endo solid-state molecule. In fact, it shows strong solvation effects at the calixarene lower bore by competing MeCN molecules that share the metal coordination sphere with the four C=O oxygens of an ""exo"" (M2+)2(MeCN) complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The expression levels of the clotting initiator protein Tissue Factor (TF) correlate with vessel density and the histological malignancy grade of glioma patients. Increased procoagulant tonus in high grade tumors (glioblastomas) also indicates a potential role for TF in progression of this disease, and suggests that anticoagulants could be used as adjuvants for its treatment. Objectives: We hypothesized that blocking of TF activity with the tick anticoagulant Ixolaris might interfere with glioblastoma progression. Methods and results: TF was identified in U87-MG cells by flow-cytometric and functional assays (extrinsic tenase). In addition, flow-cytometric analysis demonstrated the exposure of phosphatidylserine in the surface of U87-MG cells, which supported the assembly of intrinsic tenase (FIXa/FVIIIa/FX) and prothrombinase (FVa/FXa/prothrombin) complexes, accounting for the production of FXa and thrombin, respectively. Ixolaris effectively blocked the in vitro TF-dependent procoagulant activity of the U87-MG human glioblastoma cell line and attenuated multimolecular coagulation complexes assembly. Notably, Ixolaris inhibited the in vivo tumorigenic potential of U87-MG cells in nude mice, without observable bleeding. This inhibitory effect of Ixolaris on tumor growth was associated with downregulation of VEGF and reduced tumor vascularization. Conclusion: Our results suggest that Ixolaris might be a promising agent for anti-tumor therapy in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report the derivatization of mesoporous TiO(2) thin films for the preparation of H(2)O(2) amperometric sensors. The coordination of the bifunctional ligand 1,10 phenantroline, 5,6 dione on the surface Ti(IV) ions provides open coordination sites for Fe(II) cations which are the starting point for the growth of a layer of Prussian blue polymer. The porous structure of the mesoporous TiO(2) allows the growth, ion by ion of the coordination polymer. Up to four layer of Prussian blue can be deposit without losing the porous structure of the film, which results in an enhanced response of these materials as H(2)O(2) sensors. These porous confined PB modified electrodes are robust sensors that exhibit good reproducibility, environmental stability and high sensitivity towards H(2)O(2) detection. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the preparation and characterization of poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} and styrene-divinylbenzene-vinylpiridine filled with nanosilver. Theses materials were synthesized by non aqueous polymerization through a chemical reaction using benzoyl peroxide as the initiator. The nanosilver was obtained from chemical reduction using NaBH(4) as reducing agent and sodium citrate as stabilizer. The nanometric dimension of nanosilver was monitored by UV-visible and confirmed through TEM. The morphology was characterized by SEM and the thermal properties were done by TGA and DSC. The antimicrobial action of the polymers impregnated with nanosilver was evaluated using both microorganisms, Staphylococcus aureus and Escherichia coli. The antimicrobial activity of the poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} filled with nanosilver was confirmed by the presence of an inhibition halo of the bacterial growth in seeded culture media, but was not confirmed to the styrene-divinylbenzene-vinylpiridine. The present work suggest that trans - [RuCl(2)(vpy)(4)] complex facilitate the release of silver ion from the media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have employed UV-vis spectroscopy in order to investigate details of the solvation of six solvatochromic indicators, hereafter designated as ""probes"", namely, 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (RB); 4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePM; 1-methylquinolinium-8-olate, QB; 2-bromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr, 2,6-dichloro-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (WB); and 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr,, respectively. These can be divided into three pairs, each includes two probes of similar pK(a) in water and different lipophilicity. Solvation has been studied in binary mixtures, BMs, of water, W, with 12 protic organic solvents, S, including mono- and bifunctional alcohols (2-alkoxyethanoles, unsaturated and chlorinated alcohols). Each medium was treated as a mixture of S, W, and a complex solvent, S-W, formed by hydrogen bonding. Values of lambda(max) (of the probe intramolecular charge transfer) were converted into empirical polarity scales, E(T)(probe) in kcal/mol, whose values were correlated with the effective mole fraction of water in the medium, chi w(effective). This correlation furnished three equilibrium constants for the exchange of solvents in the probe solvation shell; phi(W/S) (W substitutes S): phi(S-W/W) (S-W substitutes W), and phi(S-W/S) (S-W substitutes S), respectively. The values of these constants depend on the physicochemical properties of the probe and the medium. We tested, for the first time, the applicability of a new solvation free energy relationship: phi = constant + a alpha(BM) + b beta(BM) + s(pi*(BM) + d delta) + p log P(BM), where a, b, s, and p are regression coefficients alpha(BM), beta(BM), and pi*(BM) are solvatochromic parameters of the BM, delta is a correction term for pi*, and log P is an empirical scale of lipophilicity. Correlations were carried out with two-, three-, and four-medium descriptors. In all cases, three descriptors gave satisfactory correlations; use of four parameters gave only a marginal increase of the goodness of fit. For phi(W/S), the most important descriptor was found to be the lipophilicity of the medium; for phi(S-W/W) and phi(S-W/S), solvent basicity is either statistically relevant or is the most important descriptor. These responses are different from those of E(T)(probe) of many solvatochromic indicators in pure solvents, where the importance of solvent basicity is usually marginal, and can be neglected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper describes the synthesis and characterization by dynamic light scattering, X-ray diffraction, scanning electron microscopy and atomic force microscopy of Laponite RD/Sodium polystyrenesulfonate nanocomposites obtained by radical photopolymerization initiated by the cationic dye safranine. The presence of the clay mineral does not affect the hydrotropic aggregation of the monomers, but allows a better deaggregation of the initiator molecules, decreasing the quenching of the excited states that leads to the radicals that initiate polymerization. Increasing the amount of clay mineral loading in the polymerization mixture promotes higher monomer conversion and faster polymerization. The size of the nanocomposite particles, measured by light scattering decreases from 400 to 80 nm for clay mineral loadings of 1.0 wt.%. The X-ray diffraction patterns indicate that the clay mineral does not present a regular crystalline structure in the nanocomposite. Atomic force microscopy studies show films of sodium polystyrenesulfonate polymer with embedded Laponite platelets in its structure, forming 1-8 nm height and 25-100 nm diameter aggregates. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrocatalysis of CO tolerance of Pt/C, PtRu/C, PtFe/C, PtMo/C, and PtW/C at a PEM fuel cell anode has been investigated using single cell polarization and online electrochemical mass spectrometry (EMS) measurements, and cyclic voltammetry, X-ray diffraction (XRD), in situ X-ray absorption near edge structure (XANES) analyses of the electrocatalysts. For all bimetallic electrocatalysts, which presented higher CO tolerance, EMS results have shown that the production of CO(2) start at lower hydrogen electrode overpotentials as compared to Pt/C, confirming the occurrence of the so-called bifunctional mechanism. On the other hand, XANES results indicate an increase in the Pt 5d-band vacancies for the bimetallic catalysts, particulary for PtFe/C, this leading to a weakening of the Pt-CO bond, helping to increase the CO tolerance (the so-called electronic effect). For PtMo/C and PtRu/C supplied with H(2)/CO, the formation of CO(2) is observed even when the cell is at open circuit, confirming some elimination of CO by a chemical process, most probably the water gas shift reaction. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different compositions of visible-light-curable triethylene glycol dimethacrylate/bisglycidyl methacrylate copolymers used in dental resin formulations were prepared through copolymerization photoinitiated by a camphorquinone/ethyl 4-dimethylaminobenzoate system irradiated with an Ultrablue IS light-emitting diode. The obtained copolymers were evaluated with differential scanning calorimetry. From the data for the heat of polymerization, before and after light exposure, obtained from exothermic differential scanning calorimetry curves, the light polymerization efficiency or degree of conversion of double bonds was calculated. The glass-transition temperature also was determined before and after photopolymerization. After the photopolymerization, the glass-transi-tion temperature was not well defined because of the breadth of the transition region associated with the properties of the photocured dimethacrylate. The glass-transition temperature after photopolymerization was determined experimentally and compared with the values determined with the Fox equation. In all mixtures, the experimental value was lower than the calculated value. Scanning electron microscopy was used to analyze the morphological differences in the prepared copolymer structures. (C) 2007 Wiley Periodicals, Inc.